Answer
Verified
462.9k+ views
Hint: We will proceed in this problem by making a venn diagram of the problem.
Let consider three sets i.e., $C$, $I$ and $T$ which represents the workers purchasing coffee, ice-cream and tea respectively.
Complete step-by-step answer:
\[{\text{Total number of workers}} = 123\]
Number of workers purchasing ice-cream, $n\left( I \right) = 42$
Number of workers purchasing tea, $n\left( T \right) = 36$
Number of workers purchasing coffee, $n\left( C \right) = 30$
Number of workers purchasing ice-cream and tea, $n\left( {I \cap T} \right) = 15$
Number of workers purchasing ice-cream and coffee, $n\left( {I \cap C} \right) = 10$
Number of workers purchasing only ice-cream and tea but not coffee (shown in the figure through blue coloured hatched lines) is given by
$n\left( {I \cap T} \right) - n\left( {I \cap T \cap C} \right) = 11 \Rightarrow 15 - n\left( {I \cap T \cap C} \right) = 11 \Rightarrow n\left( {I \cap T \cap C} \right) = 15 - 11 = 4$
Number of workers purchasing only coffee and tea but not ice-cream (shown in the figure through green coloured hatched lines) is given by
$n\left( {T \cap C} \right) - n\left( {I \cap T \cap C} \right) = 4 \Rightarrow n\left( {T \cap C} \right) - 4 = 4 \Rightarrow n\left( {T \cap C} \right) = 8$
As we know that for any three sets i.e., $C$, $I$ and $T$, we can write
$n\left( {I \cup T \cup C} \right) = n\left( I \right) + n\left( T \right) + n\left( C \right) - n\left( {I \cap T} \right) - n\left( {T \cap C} \right) - n\left( {I \cap C} \right) + n\left( {I \cap T \cap C} \right){\text{ }} \to {\text{(1)}}$
Now substituting all the values in equation (1), we get
Number of workers purchasing either ice-cream or tea or coffee is given by
$n\left( {I \cup T \cup C} \right) = 42 + 36 + 30 - 15 - 8 - 10 + 4 = 79$
Since, Number of workers who did not purchase anything is equal to the total number of workers minus the number of workers purchasing either ice-cream or tea or coffee.
\[{\text{Number of workers who did not purchase anything}} = 123 - 79 = 44\].
Note: In these types of problems, a venn diagram is used to calculate all the unknowns. In this particular problem, we used the given data to determine the unknowns in equation (1).
Let consider three sets i.e., $C$, $I$ and $T$ which represents the workers purchasing coffee, ice-cream and tea respectively.
Complete step-by-step answer:
\[{\text{Total number of workers}} = 123\]
Number of workers purchasing ice-cream, $n\left( I \right) = 42$
Number of workers purchasing tea, $n\left( T \right) = 36$
Number of workers purchasing coffee, $n\left( C \right) = 30$
Number of workers purchasing ice-cream and tea, $n\left( {I \cap T} \right) = 15$
Number of workers purchasing ice-cream and coffee, $n\left( {I \cap C} \right) = 10$
Number of workers purchasing only ice-cream and tea but not coffee (shown in the figure through blue coloured hatched lines) is given by
$n\left( {I \cap T} \right) - n\left( {I \cap T \cap C} \right) = 11 \Rightarrow 15 - n\left( {I \cap T \cap C} \right) = 11 \Rightarrow n\left( {I \cap T \cap C} \right) = 15 - 11 = 4$
Number of workers purchasing only coffee and tea but not ice-cream (shown in the figure through green coloured hatched lines) is given by
$n\left( {T \cap C} \right) - n\left( {I \cap T \cap C} \right) = 4 \Rightarrow n\left( {T \cap C} \right) - 4 = 4 \Rightarrow n\left( {T \cap C} \right) = 8$
As we know that for any three sets i.e., $C$, $I$ and $T$, we can write
$n\left( {I \cup T \cup C} \right) = n\left( I \right) + n\left( T \right) + n\left( C \right) - n\left( {I \cap T} \right) - n\left( {T \cap C} \right) - n\left( {I \cap C} \right) + n\left( {I \cap T \cap C} \right){\text{ }} \to {\text{(1)}}$
Now substituting all the values in equation (1), we get
Number of workers purchasing either ice-cream or tea or coffee is given by
$n\left( {I \cup T \cup C} \right) = 42 + 36 + 30 - 15 - 8 - 10 + 4 = 79$
Since, Number of workers who did not purchase anything is equal to the total number of workers minus the number of workers purchasing either ice-cream or tea or coffee.
\[{\text{Number of workers who did not purchase anything}} = 123 - 79 = 44\].
Note: In these types of problems, a venn diagram is used to calculate all the unknowns. In this particular problem, we used the given data to determine the unknowns in equation (1).
Recently Updated Pages
Using the data provided calculate the multiple bond class 11 chemistry JEE_Main
300 ml of a gas at 27C is cooled to 3 C at constant class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
The major organic compound formed by the reaction of class 11 chemistry JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE