Answer
Verified
387.9k+ views
Hint: Learn the definition of efficiency of a Carnot engine and the formula for efficiency of the Carnot cycle. The efficiency of a Carnot engine is the fraction of net work output by the engine. Use the formula for the efficiency in terms of the temperature of the sink and the source.
Formula used:
The efficiency of a heat engine is in terms the temperature of the reservoir and sink is given by, \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] where, \[{T_2}\] is the temperature of the sink and\[{T_1}\] is the temperature of the heat reservoir.
Complete step by step answer:
We have given here a heat engine operating on the planet Neptune. Now, the thermo dynamical laws at any place in the universe are equally valid. Hence, we can use the thermodynamics’ laws in the planet Neptune also.Now, we have given the temperature of the sink is \[{T_2}\]and the temperature of the source is \[{T_1}\]. Now, the efficiency of a Carnot cycle in terms of the source and sink temperatures is given by,
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Now, we have given that the efficiency of the engine is\[\dfrac{1}{5}\] hence by the condition given is,
\[\dfrac{1}{5} = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
\[\Rightarrow \dfrac{{{T_2}}}{{{T_1}}} = 1 - \dfrac{1}{5}
\Rightarrow \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{4}{5}\] ….(i)
Now, if \[{T_2}\] is lowered by 60K we will have,
\[\dfrac{1}{2} = 1 - \dfrac{{{T_2} - 60}}{{{T_1}}}\]
\[\Rightarrow \dfrac{{{T_2} - 60}}{{{T_1}}} = 1 - \dfrac{1}{2} \\
\Rightarrow \dfrac{{{T_2} - 60}}{{{T_1}}}= \dfrac{1}{2}\] ……….(ii)
Dividing equation (i) and (ii) we will have,
\[\dfrac{{\dfrac{{{T_2} - 60}}{{{T_1}}}}}{{\dfrac{{{T_2}}}{{{T_1}}}}} = \dfrac{{\dfrac{1}{2}}}{{\dfrac{4}{5}}}\]
\[\Rightarrow \dfrac{{{T_2} - 60}}{{{T_2}}} = \dfrac{1}{2} \times \dfrac{5}{4} \\
\Rightarrow \dfrac{{{T_2} - 60}}{{{T_2}}}= \dfrac{5}{8}\]
\[\Rightarrow 8{T_2} - 5{T_2} = 480\]
\[\Rightarrow 3{T_2} = 480\]
\[\Rightarrow {T_2} = 160\]
Putting the value of \[{T_2} = 160\] in equation (i) ,
\[\dfrac{{160}}{{{T_1}}} = \dfrac{4}{5}\]
\[\therefore {T_1} = 40 \times 5 = 200\]
Hence, the value of \[{T_1}\] is \[200\,K\] and the value of \[{T_2}\] is \[160\,K\].
Hence, option B is the correct answer.
Note: The temperatures taken always have to be in absolute scale else the result will be incorrect. The formula for efficiency contains only \[\dfrac{{{T_2}}}{{{T_1}}}\] it is a common mistake to write the opposite of it. If you even forget the formula, always remember that the efficiency is always less than one for real engines and the temperature of sink is always lower than the source, in that way one can easily recall the formula.
Formula used:
The efficiency of a heat engine is in terms the temperature of the reservoir and sink is given by, \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] where, \[{T_2}\] is the temperature of the sink and\[{T_1}\] is the temperature of the heat reservoir.
Complete step by step answer:
We have given here a heat engine operating on the planet Neptune. Now, the thermo dynamical laws at any place in the universe are equally valid. Hence, we can use the thermodynamics’ laws in the planet Neptune also.Now, we have given the temperature of the sink is \[{T_2}\]and the temperature of the source is \[{T_1}\]. Now, the efficiency of a Carnot cycle in terms of the source and sink temperatures is given by,
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Now, we have given that the efficiency of the engine is\[\dfrac{1}{5}\] hence by the condition given is,
\[\dfrac{1}{5} = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
\[\Rightarrow \dfrac{{{T_2}}}{{{T_1}}} = 1 - \dfrac{1}{5}
\Rightarrow \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{4}{5}\] ….(i)
Now, if \[{T_2}\] is lowered by 60K we will have,
\[\dfrac{1}{2} = 1 - \dfrac{{{T_2} - 60}}{{{T_1}}}\]
\[\Rightarrow \dfrac{{{T_2} - 60}}{{{T_1}}} = 1 - \dfrac{1}{2} \\
\Rightarrow \dfrac{{{T_2} - 60}}{{{T_1}}}= \dfrac{1}{2}\] ……….(ii)
Dividing equation (i) and (ii) we will have,
\[\dfrac{{\dfrac{{{T_2} - 60}}{{{T_1}}}}}{{\dfrac{{{T_2}}}{{{T_1}}}}} = \dfrac{{\dfrac{1}{2}}}{{\dfrac{4}{5}}}\]
\[\Rightarrow \dfrac{{{T_2} - 60}}{{{T_2}}} = \dfrac{1}{2} \times \dfrac{5}{4} \\
\Rightarrow \dfrac{{{T_2} - 60}}{{{T_2}}}= \dfrac{5}{8}\]
\[\Rightarrow 8{T_2} - 5{T_2} = 480\]
\[\Rightarrow 3{T_2} = 480\]
\[\Rightarrow {T_2} = 160\]
Putting the value of \[{T_2} = 160\] in equation (i) ,
\[\dfrac{{160}}{{{T_1}}} = \dfrac{4}{5}\]
\[\therefore {T_1} = 40 \times 5 = 200\]
Hence, the value of \[{T_1}\] is \[200\,K\] and the value of \[{T_2}\] is \[160\,K\].
Hence, option B is the correct answer.
Note: The temperatures taken always have to be in absolute scale else the result will be incorrect. The formula for efficiency contains only \[\dfrac{{{T_2}}}{{{T_1}}}\] it is a common mistake to write the opposite of it. If you even forget the formula, always remember that the efficiency is always less than one for real engines and the temperature of sink is always lower than the source, in that way one can easily recall the formula.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths