Answer
Verified
445.2k+ views
Hint:Use the formula for power in terms of the current and resistance. Also use the formula for power in terms of the change in heat and time interval. Use the formula for the heat exchanged for a substance. This formula gives the relation between mass of the substance, specific heat of the substance and change in temperature of the substance.
Formulae used:
The power \[P\] is given by
\[P = {I^2}R\] …… (1)
Here, \[I\] is the current and \[R\] is the resistance.
The power \[P\] is given by
\[P = \dfrac{{\Delta Q}}{{\Delta t}}\] …… (2)
Here, \[\Delta Q\] is the change in the heat in the time interval \[\Delta t\].
The heat exchanged \[\Delta Q\] is given by
\[\Delta Q = mc\Delta T\] …… (3)
Here, \[m\] is the mass of the substance, \[c\] is specific heat of the substance and \[\Delta T\] is a change in temperature of the substance.
Complete step by step answer:
We have given that the heat capacity of the calorimeter is \[50\,{\text{J}} \cdot ^\circ {{\text{C}}^{ - 1}}\] and the specific heat capacity of the liquid is \[450\,{\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot ^\circ {{\text{C}}^{ - 1}}\].
\[c = 50\,{\text{J}} \cdot ^\circ {{\text{C}}^{ - 1}}\]
\[\Rightarrow{c_L} = 450\,{\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot ^\circ {{\text{C}}^{ - 1}}\]
The mass of the liquid in the calorimeter is \[1\,{\text{kg}}\].
\[m = 1\,{\text{kg}}\]
The change in the temperature of the liquid is \[10^\circ {\text{C}}\] and the current passed through the calorimeter is \[2.0\,{\text{A}}\] for 10 minutes.
\[\Delta T = 10^\circ {\text{C}}\]
\[\Rightarrow I = 2.0\,{\text{A}}\]
\[\Rightarrow \Delta t = 10\,{\text{min}}\]
Convert the unit of the time to the SI system of units.
\[\Delta t = \left( {10\,{\text{min}}} \right)\left( {\dfrac{{60\,{\text{s}}}}{{1\,{\text{min}}}}} \right)\]
\[ \Rightarrow \Delta t = 600\,{\text{s}}\]
We have asked to calculate the resistance of the coil.
Substitute \[{I^2}R\] for \[P\] in equation (2).
\[{I^2}R = \dfrac{{\Delta Q}}{{\Delta t}}\]
Rearrange the above equation for \[R\].
\[R = \dfrac{{\Delta Q}}{{{I^2}\Delta t}}\]
Substitute \[m{c_{net}}\Delta T\] for \[\Delta Q\] in the above equation.
\[R = \dfrac{{m{c_{net}}\Delta T}}{{{I^2}\Delta t}}\]
The net specific heat capacity of the system is the sum of the specific heat capacity of the calorimeter and the liquid in the calorimeter.
\[{c_{net}} = c + {c_L}\]
Substitute \[c + {c_L}\] for \[{c_{net}}\] in the above equation.
\[R = \dfrac{{m\left( {c + {c_L}} \right)\Delta T}}{{{I^2}\Delta t}}\]
Substitute \[1\,{\text{kg}}\] for \[m\], \[50\,{\text{J}} \cdot ^\circ {{\text{C}}^{ - 1}}\] for \[c\], \[450\,{\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot ^\circ {{\text{C}}^{ - 1}}\] for \[{c_L}\], \[10^\circ {\text{C}}\] for \[\Delta T\], \[2.0\,{\text{A}}\] for \[I\] and \[600\,{\text{A}}\] for \[\Delta t\] in the above equation.
\[R = \dfrac{{\left( {1\,{\text{kg}}} \right)\left[ {\left( {50\,{\text{J}} \cdot ^\circ {{\text{C}}^{ - 1}}} \right) + \left( {450\,{\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot ^\circ {{\text{C}}^{ - 1}}} \right)} \right]\left( {10^\circ {\text{C}}} \right)}}{{{{\left( {2.0\,{\text{A}}} \right)}^2}\left( {600\,{\text{A}}} \right)}}\]
\[ \Rightarrow R = 2.08\,\Omega \]
\[ \therefore R \approx 2.1\,\Omega \]
Hence, the resistance of the coil is \[2.1\,\Omega \].
Note: The students should not forget to convert the unit of the time for which the current is passed through the calorimeter in the SI system of units. The students should also not forget to take the sum of the specific heats of the calorimeter and the liquid in the calorimeter. If this net specific heat of the system is not taken then the final answer will be incorrect.
Formulae used:
The power \[P\] is given by
\[P = {I^2}R\] …… (1)
Here, \[I\] is the current and \[R\] is the resistance.
The power \[P\] is given by
\[P = \dfrac{{\Delta Q}}{{\Delta t}}\] …… (2)
Here, \[\Delta Q\] is the change in the heat in the time interval \[\Delta t\].
The heat exchanged \[\Delta Q\] is given by
\[\Delta Q = mc\Delta T\] …… (3)
Here, \[m\] is the mass of the substance, \[c\] is specific heat of the substance and \[\Delta T\] is a change in temperature of the substance.
Complete step by step answer:
We have given that the heat capacity of the calorimeter is \[50\,{\text{J}} \cdot ^\circ {{\text{C}}^{ - 1}}\] and the specific heat capacity of the liquid is \[450\,{\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot ^\circ {{\text{C}}^{ - 1}}\].
\[c = 50\,{\text{J}} \cdot ^\circ {{\text{C}}^{ - 1}}\]
\[\Rightarrow{c_L} = 450\,{\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot ^\circ {{\text{C}}^{ - 1}}\]
The mass of the liquid in the calorimeter is \[1\,{\text{kg}}\].
\[m = 1\,{\text{kg}}\]
The change in the temperature of the liquid is \[10^\circ {\text{C}}\] and the current passed through the calorimeter is \[2.0\,{\text{A}}\] for 10 minutes.
\[\Delta T = 10^\circ {\text{C}}\]
\[\Rightarrow I = 2.0\,{\text{A}}\]
\[\Rightarrow \Delta t = 10\,{\text{min}}\]
Convert the unit of the time to the SI system of units.
\[\Delta t = \left( {10\,{\text{min}}} \right)\left( {\dfrac{{60\,{\text{s}}}}{{1\,{\text{min}}}}} \right)\]
\[ \Rightarrow \Delta t = 600\,{\text{s}}\]
We have asked to calculate the resistance of the coil.
Substitute \[{I^2}R\] for \[P\] in equation (2).
\[{I^2}R = \dfrac{{\Delta Q}}{{\Delta t}}\]
Rearrange the above equation for \[R\].
\[R = \dfrac{{\Delta Q}}{{{I^2}\Delta t}}\]
Substitute \[m{c_{net}}\Delta T\] for \[\Delta Q\] in the above equation.
\[R = \dfrac{{m{c_{net}}\Delta T}}{{{I^2}\Delta t}}\]
The net specific heat capacity of the system is the sum of the specific heat capacity of the calorimeter and the liquid in the calorimeter.
\[{c_{net}} = c + {c_L}\]
Substitute \[c + {c_L}\] for \[{c_{net}}\] in the above equation.
\[R = \dfrac{{m\left( {c + {c_L}} \right)\Delta T}}{{{I^2}\Delta t}}\]
Substitute \[1\,{\text{kg}}\] for \[m\], \[50\,{\text{J}} \cdot ^\circ {{\text{C}}^{ - 1}}\] for \[c\], \[450\,{\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot ^\circ {{\text{C}}^{ - 1}}\] for \[{c_L}\], \[10^\circ {\text{C}}\] for \[\Delta T\], \[2.0\,{\text{A}}\] for \[I\] and \[600\,{\text{A}}\] for \[\Delta t\] in the above equation.
\[R = \dfrac{{\left( {1\,{\text{kg}}} \right)\left[ {\left( {50\,{\text{J}} \cdot ^\circ {{\text{C}}^{ - 1}}} \right) + \left( {450\,{\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot ^\circ {{\text{C}}^{ - 1}}} \right)} \right]\left( {10^\circ {\text{C}}} \right)}}{{{{\left( {2.0\,{\text{A}}} \right)}^2}\left( {600\,{\text{A}}} \right)}}\]
\[ \Rightarrow R = 2.08\,\Omega \]
\[ \therefore R \approx 2.1\,\Omega \]
Hence, the resistance of the coil is \[2.1\,\Omega \].
Note: The students should not forget to convert the unit of the time for which the current is passed through the calorimeter in the SI system of units. The students should also not forget to take the sum of the specific heats of the calorimeter and the liquid in the calorimeter. If this net specific heat of the system is not taken then the final answer will be incorrect.
Recently Updated Pages
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
ABC is a right angled triangular plate of uniform thickness class 11 phy sec 1 JEE_Main
The linear velocity perpendicular to the radius vector class 11 physics JEE_Main
The normality of 03 M phosphorus acid H3PO3 is class 11 chemistry NEET_UG
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE