Answer
Verified
445.2k+ views
Hint: Rewrite the velocities of the helicopter and the train in the vector form. Then calculate the relative velocity of the train with respect to the helicopter. Rearrange the equation for this relative velocity and then calculate the angle between the two directions of the helicopter and the train. Hence, determine the direction of the helicopter seen by the passengers in the train.
Complete step by step answer:
We have given that the helicopter is moving towards south with a speed of \[50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] and the train is moving towards east with the same speed of \[50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\].
Hence, the velocity of the helicopter can be written as
\[{\vec v_H} = - 50\,{\text{\hat j}}\]
The velocity of the train can be written as
\[{\vec v_T} = 50\,{\text{\hat i}}\]
The relative velocity \[{\vec v_{HT}}\] of the train with respect to the helicopter is given by
\[{\vec v_{HT}} = {\vec v_H} - {\vec v_T}\]
Substitute \[ - 50\,{\text{\hat j}}\] for \[{\vec v_H}\] and \[50\,{\text{\hat i}}\] for \[{\vec v_T}\] in the above equation.
\[{\vec v_{HT}} = - 50\,{\text{\hat j}} - 50\,{\text{\hat i}}\]
\[{\vec v_{HT}} = - 50\,{\text{\hat j}} + \left( { - 50\,{\text{\hat i}}} \right)\]
The diagram representing the directions of the velocity of helicopter, velocity of train and relative velocity of the train with respect to helicopter is as follows:
The angle between the relative velocity of the train with respect to helicopter and the velocity of the train and helicopter is given by
\[\theta = {\tan ^1}\left( {\dfrac{{{v_H}}}{{{v_T}}}} \right)\]
Substitute \[ - 50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[{v_H}\] and \[ - 50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[{v_T}\] in the above equation.
\[\theta = {\tan ^1}\left( {\dfrac{{ - 50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}}}{{ - 50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}}}} \right)\]
\[ \Rightarrow \theta = {\tan ^1}\left( 1 \right)\]
\[ \therefore \theta = 45^\circ \]
Therefore, the angle between the velocity of the train with respect to the helicopter with the velocity of the train and helicopter is \[45^\circ \].Thus, the direction of the helicopter seen by the passengers in the train is south west.
Hence, the correct option is D.
Note:The students should keep in mind that the direction of the velocity of the train is towards east. But when the values are substituted in the formula for the relative velocity of the train with respect to the helicopter, we can consider the direction of the train towards west. Hence, the direction of the helicopter seen by the passengers in the train is south west.
Complete step by step answer:
We have given that the helicopter is moving towards south with a speed of \[50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] and the train is moving towards east with the same speed of \[50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\].
Hence, the velocity of the helicopter can be written as
\[{\vec v_H} = - 50\,{\text{\hat j}}\]
The velocity of the train can be written as
\[{\vec v_T} = 50\,{\text{\hat i}}\]
The relative velocity \[{\vec v_{HT}}\] of the train with respect to the helicopter is given by
\[{\vec v_{HT}} = {\vec v_H} - {\vec v_T}\]
Substitute \[ - 50\,{\text{\hat j}}\] for \[{\vec v_H}\] and \[50\,{\text{\hat i}}\] for \[{\vec v_T}\] in the above equation.
\[{\vec v_{HT}} = - 50\,{\text{\hat j}} - 50\,{\text{\hat i}}\]
\[{\vec v_{HT}} = - 50\,{\text{\hat j}} + \left( { - 50\,{\text{\hat i}}} \right)\]
The diagram representing the directions of the velocity of helicopter, velocity of train and relative velocity of the train with respect to helicopter is as follows:
The angle between the relative velocity of the train with respect to helicopter and the velocity of the train and helicopter is given by
\[\theta = {\tan ^1}\left( {\dfrac{{{v_H}}}{{{v_T}}}} \right)\]
Substitute \[ - 50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[{v_H}\] and \[ - 50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[{v_T}\] in the above equation.
\[\theta = {\tan ^1}\left( {\dfrac{{ - 50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}}}{{ - 50\,{\text{km}} \cdot {{\text{h}}^{ - 1}}}}} \right)\]
\[ \Rightarrow \theta = {\tan ^1}\left( 1 \right)\]
\[ \therefore \theta = 45^\circ \]
Therefore, the angle between the velocity of the train with respect to the helicopter with the velocity of the train and helicopter is \[45^\circ \].Thus, the direction of the helicopter seen by the passengers in the train is south west.
Hence, the correct option is D.
Note:The students should keep in mind that the direction of the velocity of the train is towards east. But when the values are substituted in the formula for the relative velocity of the train with respect to the helicopter, we can consider the direction of the train towards west. Hence, the direction of the helicopter seen by the passengers in the train is south west.
Recently Updated Pages
The total work done on a particle is equal to the change class 11 physics JEE_Main
A cylindrical tube open at both ends has a fundamental class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE