Answer
Verified
431.7k+ views
Hint In this question, the only formula that will be used is Newton's law of cooling which is $({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Here , ${\theta _t}$ is the temperature at time t,
${\theta _o}$ is the temperature of surroundings,
${\theta _p}$ is the peak temperature and
$k$ is the constant
We will first determine the unknown value of $k$ and then use this law again to find the time according to new conditions.
Complete step-by-step solution:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperature between the body and its surroundings.
Here the temperature of surroundings or we can say, the ambient temperature is ${30^ \circ }C$. So, ${\theta _ \circ } = {30^ \circ }C$
The peak temperature from which it starts cooling down is ${80^ \circ }C$. It is represented by ${\theta _p}$ . So, ${\theta _p} = {80^ \circ }C$ body cools down from peak temperature after a certain time interval. In this case, the time interval is $5\min .$ or $50 \times 60 = 300s$ and temperature ${\theta _t} = {40^ \circ }C$
Newton's law of cooling is mathematically expressed as
$({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Substituting the values, we get
$
40 - 30 = (80 - 30){e^{ - kt}} \\
10 = 50{e^{ - 300k}} \\
{e^{300k}} = 5$
Taking $\log$ both sides,we have
$ \ln ({e^{300k}}) = \ln 5 \\
300k = \ln 5 \\
k = \dfrac{ln 5}{300} \\
k = \dfrac{0.609}{300} \\
$
Now, we are asked to calculate the time in which the body will cool down. The surrounding temperature and constant k will remain the same.
Let the unknown time be t
We have
$
{\theta _p} = {62^ \circ }C \\
{\theta _t} = {32^ \circ }C \\
{\theta _o} = {30^ \circ }C \\
k = \dfrac{1.609}{300} \\
$
Using Newton's law of cooling, we have
$ \Rightarrow {\theta _t} - {\theta _o} = ({\theta _p} - {\theta _o}){e^{ - kt}}$
$ \Rightarrow 32 - 30 = (62 - 30){e^{ - kt}} $
$ \Rightarrow {e^{ - kt}} = 16 $
Taking $\log$ both sides
$ \ln ({e^{ - kt}}) = \ln 16 $
$ \Rightarrow kt = 4\ln 2 $
$ \Rightarrow t = 4\dfrac{ln 2}{k }$
$ \Rightarrow t = \dfrac{4 \times 0.693 \times 300}{1.609} = 516.84s$
$ \Rightarrow t = 8.614\min $
So, option (c) is correct .
Note:- You should be very careful with calculations and should be well versed with laws related to logarithm. Moreover, you should precisely know which physical quantities are represented by $\theta _{p},\theta _{t},\theta _{n},t$
Here , ${\theta _t}$ is the temperature at time t,
${\theta _o}$ is the temperature of surroundings,
${\theta _p}$ is the peak temperature and
$k$ is the constant
We will first determine the unknown value of $k$ and then use this law again to find the time according to new conditions.
Complete step-by-step solution:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperature between the body and its surroundings.
Here the temperature of surroundings or we can say, the ambient temperature is ${30^ \circ }C$. So, ${\theta _ \circ } = {30^ \circ }C$
The peak temperature from which it starts cooling down is ${80^ \circ }C$. It is represented by ${\theta _p}$ . So, ${\theta _p} = {80^ \circ }C$ body cools down from peak temperature after a certain time interval. In this case, the time interval is $5\min .$ or $50 \times 60 = 300s$ and temperature ${\theta _t} = {40^ \circ }C$
Newton's law of cooling is mathematically expressed as
$({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Substituting the values, we get
$
40 - 30 = (80 - 30){e^{ - kt}} \\
10 = 50{e^{ - 300k}} \\
{e^{300k}} = 5$
Taking $\log$ both sides,we have
$ \ln ({e^{300k}}) = \ln 5 \\
300k = \ln 5 \\
k = \dfrac{ln 5}{300} \\
k = \dfrac{0.609}{300} \\
$
Now, we are asked to calculate the time in which the body will cool down. The surrounding temperature and constant k will remain the same.
Let the unknown time be t
We have
$
{\theta _p} = {62^ \circ }C \\
{\theta _t} = {32^ \circ }C \\
{\theta _o} = {30^ \circ }C \\
k = \dfrac{1.609}{300} \\
$
Using Newton's law of cooling, we have
$ \Rightarrow {\theta _t} - {\theta _o} = ({\theta _p} - {\theta _o}){e^{ - kt}}$
$ \Rightarrow 32 - 30 = (62 - 30){e^{ - kt}} $
$ \Rightarrow {e^{ - kt}} = 16 $
Taking $\log$ both sides
$ \ln ({e^{ - kt}}) = \ln 16 $
$ \Rightarrow kt = 4\ln 2 $
$ \Rightarrow t = 4\dfrac{ln 2}{k }$
$ \Rightarrow t = \dfrac{4 \times 0.693 \times 300}{1.609} = 516.84s$
$ \Rightarrow t = 8.614\min $
So, option (c) is correct .
Note:- You should be very careful with calculations and should be well versed with laws related to logarithm. Moreover, you should precisely know which physical quantities are represented by $\theta _{p},\theta _{t},\theta _{n},t$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE