
A hot body obeying Newton's law of cooling is cooled down from its peak value \[{80^ \circ }C\] to an ambient temperature of ${30^ \circ }C$. It takes $5\min .$ in cooling down from ${80^ \circ }C{\text{ to }}{40^ \circ }C$. How much time will it take to cool down from ${62^ \circ }C{\text{ to }}{32^ \circ }C$
(given $\ln 2 = 0.693,\ln 5 = 1.609$)
a. $9.6\min .$
b. $3.75\min .$
c. $8.6\min .$
d. $6.5\min .$
Answer
459.9k+ views
Hint In this question, the only formula that will be used is Newton's law of cooling which is $({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Here , ${\theta _t}$ is the temperature at time t,
${\theta _o}$ is the temperature of surroundings,
${\theta _p}$ is the peak temperature and
$k$ is the constant
We will first determine the unknown value of $k$ and then use this law again to find the time according to new conditions.
Complete step-by-step solution:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperature between the body and its surroundings.
Here the temperature of surroundings or we can say, the ambient temperature is ${30^ \circ }C$. So, ${\theta _ \circ } = {30^ \circ }C$
The peak temperature from which it starts cooling down is ${80^ \circ }C$. It is represented by ${\theta _p}$ . So, ${\theta _p} = {80^ \circ }C$ body cools down from peak temperature after a certain time interval. In this case, the time interval is $5\min .$ or $50 \times 60 = 300s$ and temperature ${\theta _t} = {40^ \circ }C$
Newton's law of cooling is mathematically expressed as
$({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Substituting the values, we get
$
40 - 30 = (80 - 30){e^{ - kt}} \\
10 = 50{e^{ - 300k}} \\
{e^{300k}} = 5$
Taking $\log$ both sides,we have
$ \ln ({e^{300k}}) = \ln 5 \\
300k = \ln 5 \\
k = \dfrac{ln 5}{300} \\
k = \dfrac{0.609}{300} \\
$
Now, we are asked to calculate the time in which the body will cool down. The surrounding temperature and constant k will remain the same.
Let the unknown time be t
We have
$
{\theta _p} = {62^ \circ }C \\
{\theta _t} = {32^ \circ }C \\
{\theta _o} = {30^ \circ }C \\
k = \dfrac{1.609}{300} \\
$
Using Newton's law of cooling, we have
$ \Rightarrow {\theta _t} - {\theta _o} = ({\theta _p} - {\theta _o}){e^{ - kt}}$
$ \Rightarrow 32 - 30 = (62 - 30){e^{ - kt}} $
$ \Rightarrow {e^{ - kt}} = 16 $
Taking $\log$ both sides
$ \ln ({e^{ - kt}}) = \ln 16 $
$ \Rightarrow kt = 4\ln 2 $
$ \Rightarrow t = 4\dfrac{ln 2}{k }$
$ \Rightarrow t = \dfrac{4 \times 0.693 \times 300}{1.609} = 516.84s$
$ \Rightarrow t = 8.614\min $
So, option (c) is correct .
Note:- You should be very careful with calculations and should be well versed with laws related to logarithm. Moreover, you should precisely know which physical quantities are represented by $\theta _{p},\theta _{t},\theta _{n},t$
Here , ${\theta _t}$ is the temperature at time t,
${\theta _o}$ is the temperature of surroundings,
${\theta _p}$ is the peak temperature and
$k$ is the constant
We will first determine the unknown value of $k$ and then use this law again to find the time according to new conditions.
Complete step-by-step solution:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperature between the body and its surroundings.
Here the temperature of surroundings or we can say, the ambient temperature is ${30^ \circ }C$. So, ${\theta _ \circ } = {30^ \circ }C$
The peak temperature from which it starts cooling down is ${80^ \circ }C$. It is represented by ${\theta _p}$ . So, ${\theta _p} = {80^ \circ }C$ body cools down from peak temperature after a certain time interval. In this case, the time interval is $5\min .$ or $50 \times 60 = 300s$ and temperature ${\theta _t} = {40^ \circ }C$
Newton's law of cooling is mathematically expressed as
$({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Substituting the values, we get
$
40 - 30 = (80 - 30){e^{ - kt}} \\
10 = 50{e^{ - 300k}} \\
{e^{300k}} = 5$
Taking $\log$ both sides,we have
$ \ln ({e^{300k}}) = \ln 5 \\
300k = \ln 5 \\
k = \dfrac{ln 5}{300} \\
k = \dfrac{0.609}{300} \\
$
Now, we are asked to calculate the time in which the body will cool down. The surrounding temperature and constant k will remain the same.
Let the unknown time be t
We have
$
{\theta _p} = {62^ \circ }C \\
{\theta _t} = {32^ \circ }C \\
{\theta _o} = {30^ \circ }C \\
k = \dfrac{1.609}{300} \\
$
Using Newton's law of cooling, we have
$ \Rightarrow {\theta _t} - {\theta _o} = ({\theta _p} - {\theta _o}){e^{ - kt}}$
$ \Rightarrow 32 - 30 = (62 - 30){e^{ - kt}} $
$ \Rightarrow {e^{ - kt}} = 16 $
Taking $\log$ both sides
$ \ln ({e^{ - kt}}) = \ln 16 $
$ \Rightarrow kt = 4\ln 2 $
$ \Rightarrow t = 4\dfrac{ln 2}{k }$
$ \Rightarrow t = \dfrac{4 \times 0.693 \times 300}{1.609} = 516.84s$
$ \Rightarrow t = 8.614\min $
So, option (c) is correct .
Note:- You should be very careful with calculations and should be well versed with laws related to logarithm. Moreover, you should precisely know which physical quantities are represented by $\theta _{p},\theta _{t},\theta _{n},t$
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

What are the elders in Goa nostalgic about class 11 social science CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Name the chemical used in black and white photogra class 11 chemistry CBSE

Explain Markovnikovs and AntiMarkovnikovs rule using class 11 chemistry CBSE
