Answer
Verified
461.4k+ views
Hint: The pressure due to applied force is the ratio of magnitude of force and the area of the cross section on which the force is applied.
\[{\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{area}}\,{\text{of}}\,{\text{cross}}\,{\text{section}}}}\]
Complete step by step answer:
According to Newton’s law of gravitation, the gravitational force exerted on the car of mass m is given by the equation,
\[F = mg\]
Here, g is acceleration due to gravity.
The pressure exerted on the smaller piston of the hydraulic lift is the ratio of force exerted on the car to the area of the cross section of the smaller piston.
Therefore,
\[P = \dfrac{F}{A}\]
\[ \Rightarrow P = \dfrac{{mg}}{A}\]
Substitute \[3500\,kg\] for m, \[9.8\,m/{s^2}\] for g and \[500\,c{m^2}\] for A in the above equation.
\[P = \dfrac{{\left( {3500\,kg} \right)\left( {9.8\,m/{s^2}} \right)}}{{\left( {500\,c{m^2}} \right)\left( {\dfrac{{{{10}^{ - 4}}\,{m^2}}}{{1\,c{m^2}}}} \right)}}\]
\[ \Rightarrow P = \dfrac{{34300\,kg\,m/{s^2}}}{{500 \times {{10}^{ - 4}}\,{m^2}}}\,\]
\[\therefore P = 6.86 \times {10^5}\,N/{m^2}\]
Therefore, the pressure experienced by the smaller piston is \[6.86 \times {10^5}\,N/{m^2}\].
Note:
The weight of the object is the gravitational force exerted on the object. Sometimes students misunderstand between the mass and the weight of the object. 3500 kg is the mass of the car and not the weight. Therefore, you need to calculate the weight of the car by multiplying its mass by the acceleration due to gravity. Also, \[1\,cm = {10^{ - 2}}\,m\], therefore, \[1\,c{m^2} = {\left( {{{10}^{ - 2}}\,m} \right)^2} = {10^{ - 4}}\,{m^2}\].
\[{\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{area}}\,{\text{of}}\,{\text{cross}}\,{\text{section}}}}\]
Complete step by step answer:
According to Newton’s law of gravitation, the gravitational force exerted on the car of mass m is given by the equation,
\[F = mg\]
Here, g is acceleration due to gravity.
The pressure exerted on the smaller piston of the hydraulic lift is the ratio of force exerted on the car to the area of the cross section of the smaller piston.
Therefore,
\[P = \dfrac{F}{A}\]
\[ \Rightarrow P = \dfrac{{mg}}{A}\]
Substitute \[3500\,kg\] for m, \[9.8\,m/{s^2}\] for g and \[500\,c{m^2}\] for A in the above equation.
\[P = \dfrac{{\left( {3500\,kg} \right)\left( {9.8\,m/{s^2}} \right)}}{{\left( {500\,c{m^2}} \right)\left( {\dfrac{{{{10}^{ - 4}}\,{m^2}}}{{1\,c{m^2}}}} \right)}}\]
\[ \Rightarrow P = \dfrac{{34300\,kg\,m/{s^2}}}{{500 \times {{10}^{ - 4}}\,{m^2}}}\,\]
\[\therefore P = 6.86 \times {10^5}\,N/{m^2}\]
Therefore, the pressure experienced by the smaller piston is \[6.86 \times {10^5}\,N/{m^2}\].
Note:
The weight of the object is the gravitational force exerted on the object. Sometimes students misunderstand between the mass and the weight of the object. 3500 kg is the mass of the car and not the weight. Therefore, you need to calculate the weight of the car by multiplying its mass by the acceleration due to gravity. Also, \[1\,cm = {10^{ - 2}}\,m\], therefore, \[1\,c{m^2} = {\left( {{{10}^{ - 2}}\,m} \right)^2} = {10^{ - 4}}\,{m^2}\].
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light