Answer
Verified
500.1k+ views
Hint: - First we will find the total number of functions from A to A then we will subtract the number of functions which are bijections.
We know that if a set $S$ has $n$ distinct elements then the number of functions from $S$ to $S$ is given by${n^n}$. (Formulae)
Since, A is the set having 6 distinct elements.
Then total number of functions from A to A are = ${6^6}$
As we know that the functions which are one-one will be onto as well, as the mapping is from the same set to the same set.
We know that if a set $S$ has $n$distinct elements then the number of one-one and onto functions from $S$ to $S$ is given by $n!$. (Formulae)
So, the number of functions which are both one-one and onto (i.e. bijective) are = $6!$
Hence, the total number of distinct functions from A to A which is not bijections is:
Total number of functions $-$ Number of bijective functions
$ = {6^6} - 6!$
Hence, option C is correct.
Note: - A bijective function is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There is no method to find the number of non-bijective functions, so we have counted the total number of functions and subtracted the number of bijective functions.
We know that if a set $S$ has $n$ distinct elements then the number of functions from $S$ to $S$ is given by${n^n}$. (Formulae)
Since, A is the set having 6 distinct elements.
Then total number of functions from A to A are = ${6^6}$
As we know that the functions which are one-one will be onto as well, as the mapping is from the same set to the same set.
We know that if a set $S$ has $n$distinct elements then the number of one-one and onto functions from $S$ to $S$ is given by $n!$. (Formulae)
So, the number of functions which are both one-one and onto (i.e. bijective) are = $6!$
Hence, the total number of distinct functions from A to A which is not bijections is:
Total number of functions $-$ Number of bijective functions
$ = {6^6} - 6!$
Hence, option C is correct.
Note: - A bijective function is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There is no method to find the number of non-bijective functions, so we have counted the total number of functions and subtracted the number of bijective functions.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE