Answer
Verified
460.5k+ views
Hint:Refer to the ideal gas law to determine the pressure at arm A. Use the formula to calculate the pressure below the height h of the liquid column of density \[\rho \].
Complete step by step answer:
According to Ideal gas law, the product of pressure and volume is constant.
Therefore, we can write,
\[\Rightarrow{P_1}{V_1} = {P_2}{V_2}\]
Here, \[{V_1}\] is the volume of the arm A at atmospheric pressure \[{P_1}\] and \[{V_2}\] is the volume of the arm A at pressure \[{P_2}\].
The initial volume is V and the final volume is \[\dfrac{V}{2}\]. The pressure \[{P_1}\] is the atmospheric pressure P.
Therefore, the above equation becomes,
\[\Rightarrow PV = {P_2}\dfrac{V}{2}\]
\[ \Rightarrow {p_2} = 2P\]
We know that the pressure below the height H is,
\[ \Rightarrow P = H\rho g\]
Therefore,
\[\Rightarrow {p_2} = 2H\rho g\]
Here, \[\rho \] is the density of the liquid and g is the acceleration due to gravity.
Let the height of the mercury column is x. The pressure below the height x is the sum of atmospheric pressure and the pressure due to the mercury column above it. We have determined the pressure at the arm A which is 2P.
Therefore,
\[\Rightarrow 2P = {P_0} + x\rho g\]
We have given, the atmospheric pressure is H cm of mercury. Therefore, the atmospheric pressure is,
\[\Rightarrow{P_0} = H\rho g\]
Therefore, the pressure at arm A is,
\[ \Rightarrow 2H\rho g = H\rho g + x\rho g\]
\[ \Rightarrow 2H\rho g = \rho g\left( {H + x} \right)\]
\[ \Rightarrow 2H = \left( {H + x} \right)\]
\[ \Rightarrow\therefore x = h\]
So, the correct answer is option (A).
Note:The pressure inside an open liquid column is the addition of atmospheric pressure over the surface of the liquid and the pressure due to liquid above that point.
Complete step by step answer:
According to Ideal gas law, the product of pressure and volume is constant.
Therefore, we can write,
\[\Rightarrow{P_1}{V_1} = {P_2}{V_2}\]
Here, \[{V_1}\] is the volume of the arm A at atmospheric pressure \[{P_1}\] and \[{V_2}\] is the volume of the arm A at pressure \[{P_2}\].
The initial volume is V and the final volume is \[\dfrac{V}{2}\]. The pressure \[{P_1}\] is the atmospheric pressure P.
Therefore, the above equation becomes,
\[\Rightarrow PV = {P_2}\dfrac{V}{2}\]
\[ \Rightarrow {p_2} = 2P\]
We know that the pressure below the height H is,
\[ \Rightarrow P = H\rho g\]
Therefore,
\[\Rightarrow {p_2} = 2H\rho g\]
Here, \[\rho \] is the density of the liquid and g is the acceleration due to gravity.
Let the height of the mercury column is x. The pressure below the height x is the sum of atmospheric pressure and the pressure due to the mercury column above it. We have determined the pressure at the arm A which is 2P.
Therefore,
\[\Rightarrow 2P = {P_0} + x\rho g\]
We have given, the atmospheric pressure is H cm of mercury. Therefore, the atmospheric pressure is,
\[\Rightarrow{P_0} = H\rho g\]
Therefore, the pressure at arm A is,
\[ \Rightarrow 2H\rho g = H\rho g + x\rho g\]
\[ \Rightarrow 2H\rho g = \rho g\left( {H + x} \right)\]
\[ \Rightarrow 2H = \left( {H + x} \right)\]
\[ \Rightarrow\therefore x = h\]
So, the correct answer is option (A).
Note:The pressure inside an open liquid column is the addition of atmospheric pressure over the surface of the liquid and the pressure due to liquid above that point.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE