Answer
Verified
459.3k+ views
Hint: In this question, first we will draw a diagram for the question. After this we will assume the length BA as x and corresponding rate as $\dfrac{{dx}}{{dt}}$ and similarly do for side BC. Then we apply the Pythagoras theorem in triangle ABC and differentiate further to get a new equation.
Complete step-by-step answer:
The diagram for question is given below:
It is given that the lower portion of the ladder is pulled away from the ground that is point A is being pulled. So length AB must be changing.
So, let the length of AB = x cm.
Now change in length AB with time will be given as:
$\dfrac{{d(AB)}}{{dt}} = \dfrac{{dx}}{{dt}}$ . This is the rate of pulling away the ladder on ground which is given as 3cm/sec.
$\therefore \dfrac{{dx}}{{dt}} = 3$ …………………………………. (1)
Now from the figure it is clear that if A is pulled away from ground then point C will be dragged towards ground whose rate is given as 4cm/sec.
Let length of BC = y cm
Thus change in length of CB with time is given as:
$\dfrac{{d(BC)}}{{dt}} = - \dfrac{{dy}}{{dt}}$ = 4 (Negative because it’s reducing with time)…………….. (2)
Now clearly $\vartriangle ABC$ is right angled at B so let’s apply Pythagoras theorem.
According to Pythagoras theorem,
$A{B^2} + B{C^2} = C{A^2}$
So we can write:
${x^2} + {y^2} = {10^2} = 100$ ………………….. (3)
Differentiating equation (3) with respect to ‘t’, we get:
$2x\dfrac{{dx}}{{dt}} + 2y\dfrac{{dy}}{{dt}} = 0$
Putting the values from equation 1 and equation 2, we get:
2x(3)+2y(-4) = 0
$ \Rightarrow x = \dfrac{{4y}}{3}$
Now putting this x in equation 3, we get:
$\dfrac{{16}}{9}{y^2} + {y^2} = 100$
$ \Rightarrow \dfrac{{25}}{9}{y^2} = 100$
On further solving the above equation, we get:
${y^2} = \dfrac{{100 \times 9}}{{25}} = 36$
$ \Rightarrow y = \pm 6$
Since y is the length of CB and thus it can’t be negative.
Hence, y= 6 cm.
Thus option (d) is the right answer.
So, the correct answer is “Option (d)”.
Note: Whenever the rate of change of length with time is being told in a problem statement, make sure that if the length is increasing with time (generally when pulled) so the rate change is positive and if it is pushed then eventually it’s decreasing with time hence the rate change should be negative. You should remember the Pythagoras theorem which is applied in the right triangle.
Complete step-by-step answer:
The diagram for question is given below:
It is given that the lower portion of the ladder is pulled away from the ground that is point A is being pulled. So length AB must be changing.
So, let the length of AB = x cm.
Now change in length AB with time will be given as:
$\dfrac{{d(AB)}}{{dt}} = \dfrac{{dx}}{{dt}}$ . This is the rate of pulling away the ladder on ground which is given as 3cm/sec.
$\therefore \dfrac{{dx}}{{dt}} = 3$ …………………………………. (1)
Now from the figure it is clear that if A is pulled away from ground then point C will be dragged towards ground whose rate is given as 4cm/sec.
Let length of BC = y cm
Thus change in length of CB with time is given as:
$\dfrac{{d(BC)}}{{dt}} = - \dfrac{{dy}}{{dt}}$ = 4 (Negative because it’s reducing with time)…………….. (2)
Now clearly $\vartriangle ABC$ is right angled at B so let’s apply Pythagoras theorem.
According to Pythagoras theorem,
$A{B^2} + B{C^2} = C{A^2}$
So we can write:
${x^2} + {y^2} = {10^2} = 100$ ………………….. (3)
Differentiating equation (3) with respect to ‘t’, we get:
$2x\dfrac{{dx}}{{dt}} + 2y\dfrac{{dy}}{{dt}} = 0$
Putting the values from equation 1 and equation 2, we get:
2x(3)+2y(-4) = 0
$ \Rightarrow x = \dfrac{{4y}}{3}$
Now putting this x in equation 3, we get:
$\dfrac{{16}}{9}{y^2} + {y^2} = 100$
$ \Rightarrow \dfrac{{25}}{9}{y^2} = 100$
On further solving the above equation, we get:
${y^2} = \dfrac{{100 \times 9}}{{25}} = 36$
$ \Rightarrow y = \pm 6$
Since y is the length of CB and thus it can’t be negative.
Hence, y= 6 cm.
Thus option (d) is the right answer.
So, the correct answer is “Option (d)”.
Note: Whenever the rate of change of length with time is being told in a problem statement, make sure that if the length is increasing with time (generally when pulled) so the rate change is positive and if it is pushed then eventually it’s decreasing with time hence the rate change should be negative. You should remember the Pythagoras theorem which is applied in the right triangle.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE