Answer
Verified
499.8k+ views
Hint: -Length of the rungs decrease uniformly therefore they will form an A.P.
According to the question it is given that the rungs are 25cm apart and the top and bottom rungs are ${\text{2}}\dfrac{1}{2}{\text{m}}$apart.
$ \Rightarrow {\text{2}}\dfrac{1}{2}m = \dfrac{5}{2}m = \dfrac{{500}}{2}cm = 250cm.\left[ {\because {\text{ 1m = 100cm}}} \right]$
$\therefore $Total number of rungs${\text{ = }}\dfrac{{{\text{Distance between total rungs}}}}{{{\text{Distance between two rungs}}}} + 1$, (plus one because of the bottom rung and thereafter all rungs are 25 cm apart).
$\therefore $Total number of rungs${\text{ = }}\dfrac{{250}}{{25}} + 1 = 11$
Now as the length of the rungs decrease uniformly therefore they will form an A.P.
So the A.P becomes $\left( {45,.................,25} \right)$
So, first term $\left( {{a_1}} \right)$of an A.P${\text{ = 45}}$, last term $\left( {{a_n}} \right)$of an A.P${\text{ = 25}}$, and number of terms in this A.P$ = 11$
Now, as we know last term of this series is written as
${a_n} = {a_1} + \left( {n - 1} \right)d$, Where d is the common difference.
$ \Rightarrow d = \dfrac{{{a_n} - {a_1}}}{n} + 1 = \dfrac{{25 - 45}}{{11}} + 1 = \dfrac{{ - 20}}{{11}} + 1 = \dfrac{{ - 9}}{{11}}$
So, the length of the rungs decrease uniformly by $\dfrac{{ - 9}}{{11}}cm$
The length of the wood required for the rungs equals the sum of all the terms of this A.P
${S_n} = 45 + \left( {45 - \dfrac{9}{{11}}} \right) + \left( {45 - \dfrac{9}{{11}} - \dfrac{9}{{11}}} \right) + .............. + 25$
Therefore sum of this A.P${\text{ = }}{{\text{S}}_n} = \dfrac{n}{2}\left( {{a_1} + {a_l}} \right)$
$ \Rightarrow {{\text{S}}_n} = \dfrac{{11}}{2}\left( {45 + 25} \right) = 11 \times 35 = 385cm$
Therefore the length of the wood required for the rungs${\text{ = 385cm}}$.
Note: -In such types of questions first find out the total numbers of rungs, then the key concept is that the length of the rungs decrease uniformly so, they will form an A.P so, the length of the wood required for the rungs equals the sum of all the terms of this A.P, so apply the formula of sum of an A.P which is stated above, we will get the required answer.
According to the question it is given that the rungs are 25cm apart and the top and bottom rungs are ${\text{2}}\dfrac{1}{2}{\text{m}}$apart.
$ \Rightarrow {\text{2}}\dfrac{1}{2}m = \dfrac{5}{2}m = \dfrac{{500}}{2}cm = 250cm.\left[ {\because {\text{ 1m = 100cm}}} \right]$
$\therefore $Total number of rungs${\text{ = }}\dfrac{{{\text{Distance between total rungs}}}}{{{\text{Distance between two rungs}}}} + 1$, (plus one because of the bottom rung and thereafter all rungs are 25 cm apart).
$\therefore $Total number of rungs${\text{ = }}\dfrac{{250}}{{25}} + 1 = 11$
Now as the length of the rungs decrease uniformly therefore they will form an A.P.
So the A.P becomes $\left( {45,.................,25} \right)$
So, first term $\left( {{a_1}} \right)$of an A.P${\text{ = 45}}$, last term $\left( {{a_n}} \right)$of an A.P${\text{ = 25}}$, and number of terms in this A.P$ = 11$
Now, as we know last term of this series is written as
${a_n} = {a_1} + \left( {n - 1} \right)d$, Where d is the common difference.
$ \Rightarrow d = \dfrac{{{a_n} - {a_1}}}{n} + 1 = \dfrac{{25 - 45}}{{11}} + 1 = \dfrac{{ - 20}}{{11}} + 1 = \dfrac{{ - 9}}{{11}}$
So, the length of the rungs decrease uniformly by $\dfrac{{ - 9}}{{11}}cm$
The length of the wood required for the rungs equals the sum of all the terms of this A.P
${S_n} = 45 + \left( {45 - \dfrac{9}{{11}}} \right) + \left( {45 - \dfrac{9}{{11}} - \dfrac{9}{{11}}} \right) + .............. + 25$
Therefore sum of this A.P${\text{ = }}{{\text{S}}_n} = \dfrac{n}{2}\left( {{a_1} + {a_l}} \right)$
$ \Rightarrow {{\text{S}}_n} = \dfrac{{11}}{2}\left( {45 + 25} \right) = 11 \times 35 = 385cm$
Therefore the length of the wood required for the rungs${\text{ = 385cm}}$.
Note: -In such types of questions first find out the total numbers of rungs, then the key concept is that the length of the rungs decrease uniformly so, they will form an A.P so, the length of the wood required for the rungs equals the sum of all the terms of this A.P, so apply the formula of sum of an A.P which is stated above, we will get the required answer.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE