
A ladder leaning against a wall makes an angle of \[{{60}^{\circ }}\] with the horizontal. If the fact of the ladder is 2.5 m away from the wall, find the length of the ladder.
Answer
516.2k+ views
- Hint:- Draw figure as per mentioned in the question. Consider the triangle formed. Take the cosine function and find the length of the ladder.
Complete step-by-step answer: -
From the figure you can understand that BC is the wall in which the ladder AC is leaning against.
It is said that the ladder AC makes \[{{60}^{\circ }}\] angle with the horizontal, i.e. the ladder is leaning against the wall at an angle of \[{{60}^{\circ }}\].
Now the distance between the foot of the ladder and the wall is 2.5 m. Thus from the figure, you can say that, AB = 2.5 m.
Now the wall is perpendicular to the ground. So BC is perpendicular to AB, i.e. \[BC\bot AB\] and \[\angle ABC={{90}^{\circ }}\].
Now let us consider \[\Delta ABC\], from the figure.
\[\begin{align}
& \cos {{60}^{\circ }}=\dfrac{adjacent\text{ }angle}{hypotenuse}=\dfrac{AB}{AC} \\
& \cos {{60}^{\circ }}=\dfrac{2.5}{AC} \\
& \Rightarrow AC=\dfrac{2.5}{\cos {{60}^{\circ }}} \\
\end{align}\]
From trigonometry, we know that \[\cos {{60}^{\circ }}={}^{1}/{}_{2}\].
\[\therefore AC=\dfrac{2.5}{{}^{1}/{}_{2}}=2.5\times 2=5\] m.
Thus we got AC = 5 cm.
So the length of the ladder is 5 cm.
Note:
We can find the length of the wall BC, by using Pythagoras theorem.
\[\begin{align}
& A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}} \\
& B{{C}^{2}}=A{{C}^{2}}-A{{B}^{2}} \\
& \Rightarrow BC=\sqrt{A{{C}^{2}}-A{{B}^{2}}}=\sqrt{{{5}^{2}}-{{\left( 2.5 \right)}^{2}}}=\sqrt{25-6.25}=\sqrt{18.75} \\
& =4.33m \\
\end{align}\]
Thus, the height of the wall is 4.33 m.
Complete step-by-step answer: -
From the figure you can understand that BC is the wall in which the ladder AC is leaning against.
It is said that the ladder AC makes \[{{60}^{\circ }}\] angle with the horizontal, i.e. the ladder is leaning against the wall at an angle of \[{{60}^{\circ }}\].
Now the distance between the foot of the ladder and the wall is 2.5 m. Thus from the figure, you can say that, AB = 2.5 m.
Now the wall is perpendicular to the ground. So BC is perpendicular to AB, i.e. \[BC\bot AB\] and \[\angle ABC={{90}^{\circ }}\].
Now let us consider \[\Delta ABC\], from the figure.
\[\begin{align}
& \cos {{60}^{\circ }}=\dfrac{adjacent\text{ }angle}{hypotenuse}=\dfrac{AB}{AC} \\
& \cos {{60}^{\circ }}=\dfrac{2.5}{AC} \\
& \Rightarrow AC=\dfrac{2.5}{\cos {{60}^{\circ }}} \\
\end{align}\]
From trigonometry, we know that \[\cos {{60}^{\circ }}={}^{1}/{}_{2}\].
\[\therefore AC=\dfrac{2.5}{{}^{1}/{}_{2}}=2.5\times 2=5\] m.
Thus we got AC = 5 cm.
So the length of the ladder is 5 cm.
Note:
We can find the length of the wall BC, by using Pythagoras theorem.
\[\begin{align}
& A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}} \\
& B{{C}^{2}}=A{{C}^{2}}-A{{B}^{2}} \\
& \Rightarrow BC=\sqrt{A{{C}^{2}}-A{{B}^{2}}}=\sqrt{{{5}^{2}}-{{\left( 2.5 \right)}^{2}}}=\sqrt{25-6.25}=\sqrt{18.75} \\
& =4.33m \\
\end{align}\]
Thus, the height of the wall is 4.33 m.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

