Answer
Verified
488.7k+ views
Hint: To calculate the probability of getting the letters \[ON\] from the words \[LONDON\] and \[CLIFTON\], use conditional probability and Bayes Formula for finding the probability of an event \[A\] (which is the ratio of number of favourable outcomes to the total number of outcomes) given two other events \[B\] and \[C\] which states that \[P\left( A \right)=P\left( A|B \right)P\left( B \right)+P\left( A|C \right)P\left( C \right)\].
We have the words \[LONDON\] and \[CLIFTON\]. We have to find the probability of getting two consecutive letters \[ON\] from each of the two words.
We know that probability of any event is defined as the ratio of number of favourable outcomes to the number of possible outcomes. We will find the probability of getting \[ON\] from each case.
Let’s denote the event of getting letters \[ON\] by \[A\] and the probability of getting letters \[LONDON\] and \[CLIFTON\] by \[B\] and \[C\] respectively.
As we have equal chances of occurring of letters \[LONDON\] and \[CLIFTON\] , we have \[P\left( B \right)=P\left( C \right)=\dfrac{1}{2}\].
We will evaluate the probability of getting \[ON\] from word \[LONDON\].
We will find all the possible consecutive two letter words from the word \[LONDON\]. The possible two letter consecutive words from the word \[LONDON\] are \[\{LO,ON,ND,DO,ON\}\].
The number of times the word \[ON\] occurs is \[2\] and the number of possible outcomes are \[5\].
Thus, the probability of getting \[ON\] from word \[LONDON\]\[=P\left( A|B \right)=\dfrac{2}{5}\].
Similarly, we will evaluate the probability of getting \[ON\] from word \[CLIFTON\].
We will find all the possible consecutive two letter words from the word \[CLIFTON\]. The possible two letter consecutive words from the word \[CLIFTON\] are \[\{CL,LI,IF,FT,TO,ON\}\].
The number of times the word \[ON\] occurs is \[1\] and the number of possible outcomes are \[6\].
Thus, the probability of getting \[ON\] from word \[CLIFTON\]\[=P\left( A|C \right)=\dfrac{1}{6}\].
So, the probability of getting \[ON=P\left( A \right)=P\left( A|B \right)P\left( B \right)+P\left( A|C \right)P\left( C \right)\].
Thus, we have \[P\left( A \right)=\dfrac{2}{5}\times \dfrac{1}{2}+\dfrac{1}{6}\times \dfrac{1}{2}=\dfrac{17}{60}\].
(i) We have to find the probability of getting \[ON\] from \[LONDON\] given that the letters \[ON\] are already on the envelope.
Probability of getting \[ON\] from \[LONDON\] given that \[ON\] is already on the envelope \[=P\left( B|A \right)=\dfrac{P\left( A|B \right)P\left( B \right)}{P\left( A \right)}=\dfrac{\dfrac{2}{5}\times \dfrac{1}{2}}{\dfrac{17}{60}}=\dfrac{12}{17}\].
(ii) We have to find the probability of getting \[ON\] from \[CLIFTON\] given that the letters \[ON\] are already on the envelope.
Probability of getting \[ON\] from \[CLIFTON\] given that \[ON\] is already on the envelope \[=P\left( B|A \right)=\dfrac{P\left( A|C \right)P\left( C \right)}{P\left( A \right)}=\dfrac{\dfrac{1}{6}\times \dfrac{1}{2}}{\dfrac{17}{60}}=\dfrac{5}{17}\].
Hence, the probability of getting \[ON\] from \[LONDON\] is \[\dfrac{12}{17}\] and from \[CLIFTON\] is \[\dfrac{5}{17}\].
Note: Probability of any event describes how likely an event is to occur or how likely it is that a proposition is true. The value of probability of any event always lies in the range \[\left[ 0,1 \right]\] where having \[0\] probability indicates that the event is impossible to happen, while having probability equal to \[1\] indicates that the event will surely happen. Conditional probability of an event \[A\] is the probability of occurrence of event \[A\] given that event \[B\] has already occurred.
We have the words \[LONDON\] and \[CLIFTON\]. We have to find the probability of getting two consecutive letters \[ON\] from each of the two words.
We know that probability of any event is defined as the ratio of number of favourable outcomes to the number of possible outcomes. We will find the probability of getting \[ON\] from each case.
Let’s denote the event of getting letters \[ON\] by \[A\] and the probability of getting letters \[LONDON\] and \[CLIFTON\] by \[B\] and \[C\] respectively.
As we have equal chances of occurring of letters \[LONDON\] and \[CLIFTON\] , we have \[P\left( B \right)=P\left( C \right)=\dfrac{1}{2}\].
We will evaluate the probability of getting \[ON\] from word \[LONDON\].
We will find all the possible consecutive two letter words from the word \[LONDON\]. The possible two letter consecutive words from the word \[LONDON\] are \[\{LO,ON,ND,DO,ON\}\].
The number of times the word \[ON\] occurs is \[2\] and the number of possible outcomes are \[5\].
Thus, the probability of getting \[ON\] from word \[LONDON\]\[=P\left( A|B \right)=\dfrac{2}{5}\].
Similarly, we will evaluate the probability of getting \[ON\] from word \[CLIFTON\].
We will find all the possible consecutive two letter words from the word \[CLIFTON\]. The possible two letter consecutive words from the word \[CLIFTON\] are \[\{CL,LI,IF,FT,TO,ON\}\].
The number of times the word \[ON\] occurs is \[1\] and the number of possible outcomes are \[6\].
Thus, the probability of getting \[ON\] from word \[CLIFTON\]\[=P\left( A|C \right)=\dfrac{1}{6}\].
So, the probability of getting \[ON=P\left( A \right)=P\left( A|B \right)P\left( B \right)+P\left( A|C \right)P\left( C \right)\].
Thus, we have \[P\left( A \right)=\dfrac{2}{5}\times \dfrac{1}{2}+\dfrac{1}{6}\times \dfrac{1}{2}=\dfrac{17}{60}\].
(i) We have to find the probability of getting \[ON\] from \[LONDON\] given that the letters \[ON\] are already on the envelope.
Probability of getting \[ON\] from \[LONDON\] given that \[ON\] is already on the envelope \[=P\left( B|A \right)=\dfrac{P\left( A|B \right)P\left( B \right)}{P\left( A \right)}=\dfrac{\dfrac{2}{5}\times \dfrac{1}{2}}{\dfrac{17}{60}}=\dfrac{12}{17}\].
(ii) We have to find the probability of getting \[ON\] from \[CLIFTON\] given that the letters \[ON\] are already on the envelope.
Probability of getting \[ON\] from \[CLIFTON\] given that \[ON\] is already on the envelope \[=P\left( B|A \right)=\dfrac{P\left( A|C \right)P\left( C \right)}{P\left( A \right)}=\dfrac{\dfrac{1}{6}\times \dfrac{1}{2}}{\dfrac{17}{60}}=\dfrac{5}{17}\].
Hence, the probability of getting \[ON\] from \[LONDON\] is \[\dfrac{12}{17}\] and from \[CLIFTON\] is \[\dfrac{5}{17}\].
Note: Probability of any event describes how likely an event is to occur or how likely it is that a proposition is true. The value of probability of any event always lies in the range \[\left[ 0,1 \right]\] where having \[0\] probability indicates that the event is impossible to happen, while having probability equal to \[1\] indicates that the event will surely happen. Conditional probability of an event \[A\] is the probability of occurrence of event \[A\] given that event \[B\] has already occurred.
Recently Updated Pages
The aqueous solution of aluminium chloride is acidic due to
In order to prevent the spoilage of potato chips they are packed in plastic bags in an atmosphere of
When NaCl is dissolved in water the sodium ion becomes
Give the summary of the story the enchanted pool class 10 english ICSE
What is the message of the poem Nine Gold Medals class 10 english ICSE
Which body formulates the foreign policy of India class 10 social science ICSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
Can anyone list 10 advantages and disadvantages of friction
What is the factorial of 5 class 10 maths CBSE
What is spore formation class 11 biology CBSE