Answer
Verified
498.3k+ views
Hint: To calculate the probability of getting the letters \[ON\] from the words \[LONDON\] and \[CLIFTON\], use conditional probability and Bayes Formula for finding the probability of an event \[A\] (which is the ratio of number of favourable outcomes to the total number of outcomes) given two other events \[B\] and \[C\] which states that \[P\left( A \right)=P\left( A|B \right)P\left( B \right)+P\left( A|C \right)P\left( C \right)\].
We have the words \[LONDON\] and \[CLIFTON\]. We have to find the probability of getting two consecutive letters \[ON\] from each of the two words.
We know that probability of any event is defined as the ratio of number of favourable outcomes to the number of possible outcomes. We will find the probability of getting \[ON\] from each case.
Let’s denote the event of getting letters \[ON\] by \[A\] and the probability of getting letters \[LONDON\] and \[CLIFTON\] by \[B\] and \[C\] respectively.
As we have equal chances of occurring of letters \[LONDON\] and \[CLIFTON\] , we have \[P\left( B \right)=P\left( C \right)=\dfrac{1}{2}\].
We will evaluate the probability of getting \[ON\] from word \[LONDON\].
We will find all the possible consecutive two letter words from the word \[LONDON\]. The possible two letter consecutive words from the word \[LONDON\] are \[\{LO,ON,ND,DO,ON\}\].
The number of times the word \[ON\] occurs is \[2\] and the number of possible outcomes are \[5\].
Thus, the probability of getting \[ON\] from word \[LONDON\]\[=P\left( A|B \right)=\dfrac{2}{5}\].
Similarly, we will evaluate the probability of getting \[ON\] from word \[CLIFTON\].
We will find all the possible consecutive two letter words from the word \[CLIFTON\]. The possible two letter consecutive words from the word \[CLIFTON\] are \[\{CL,LI,IF,FT,TO,ON\}\].
The number of times the word \[ON\] occurs is \[1\] and the number of possible outcomes are \[6\].
Thus, the probability of getting \[ON\] from word \[CLIFTON\]\[=P\left( A|C \right)=\dfrac{1}{6}\].
So, the probability of getting \[ON=P\left( A \right)=P\left( A|B \right)P\left( B \right)+P\left( A|C \right)P\left( C \right)\].
Thus, we have \[P\left( A \right)=\dfrac{2}{5}\times \dfrac{1}{2}+\dfrac{1}{6}\times \dfrac{1}{2}=\dfrac{17}{60}\].
(i) We have to find the probability of getting \[ON\] from \[LONDON\] given that the letters \[ON\] are already on the envelope.
Probability of getting \[ON\] from \[LONDON\] given that \[ON\] is already on the envelope \[=P\left( B|A \right)=\dfrac{P\left( A|B \right)P\left( B \right)}{P\left( A \right)}=\dfrac{\dfrac{2}{5}\times \dfrac{1}{2}}{\dfrac{17}{60}}=\dfrac{12}{17}\].
(ii) We have to find the probability of getting \[ON\] from \[CLIFTON\] given that the letters \[ON\] are already on the envelope.
Probability of getting \[ON\] from \[CLIFTON\] given that \[ON\] is already on the envelope \[=P\left( B|A \right)=\dfrac{P\left( A|C \right)P\left( C \right)}{P\left( A \right)}=\dfrac{\dfrac{1}{6}\times \dfrac{1}{2}}{\dfrac{17}{60}}=\dfrac{5}{17}\].
Hence, the probability of getting \[ON\] from \[LONDON\] is \[\dfrac{12}{17}\] and from \[CLIFTON\] is \[\dfrac{5}{17}\].
Note: Probability of any event describes how likely an event is to occur or how likely it is that a proposition is true. The value of probability of any event always lies in the range \[\left[ 0,1 \right]\] where having \[0\] probability indicates that the event is impossible to happen, while having probability equal to \[1\] indicates that the event will surely happen. Conditional probability of an event \[A\] is the probability of occurrence of event \[A\] given that event \[B\] has already occurred.
We have the words \[LONDON\] and \[CLIFTON\]. We have to find the probability of getting two consecutive letters \[ON\] from each of the two words.
We know that probability of any event is defined as the ratio of number of favourable outcomes to the number of possible outcomes. We will find the probability of getting \[ON\] from each case.
Let’s denote the event of getting letters \[ON\] by \[A\] and the probability of getting letters \[LONDON\] and \[CLIFTON\] by \[B\] and \[C\] respectively.
As we have equal chances of occurring of letters \[LONDON\] and \[CLIFTON\] , we have \[P\left( B \right)=P\left( C \right)=\dfrac{1}{2}\].
We will evaluate the probability of getting \[ON\] from word \[LONDON\].
We will find all the possible consecutive two letter words from the word \[LONDON\]. The possible two letter consecutive words from the word \[LONDON\] are \[\{LO,ON,ND,DO,ON\}\].
The number of times the word \[ON\] occurs is \[2\] and the number of possible outcomes are \[5\].
Thus, the probability of getting \[ON\] from word \[LONDON\]\[=P\left( A|B \right)=\dfrac{2}{5}\].
Similarly, we will evaluate the probability of getting \[ON\] from word \[CLIFTON\].
We will find all the possible consecutive two letter words from the word \[CLIFTON\]. The possible two letter consecutive words from the word \[CLIFTON\] are \[\{CL,LI,IF,FT,TO,ON\}\].
The number of times the word \[ON\] occurs is \[1\] and the number of possible outcomes are \[6\].
Thus, the probability of getting \[ON\] from word \[CLIFTON\]\[=P\left( A|C \right)=\dfrac{1}{6}\].
So, the probability of getting \[ON=P\left( A \right)=P\left( A|B \right)P\left( B \right)+P\left( A|C \right)P\left( C \right)\].
Thus, we have \[P\left( A \right)=\dfrac{2}{5}\times \dfrac{1}{2}+\dfrac{1}{6}\times \dfrac{1}{2}=\dfrac{17}{60}\].
(i) We have to find the probability of getting \[ON\] from \[LONDON\] given that the letters \[ON\] are already on the envelope.
Probability of getting \[ON\] from \[LONDON\] given that \[ON\] is already on the envelope \[=P\left( B|A \right)=\dfrac{P\left( A|B \right)P\left( B \right)}{P\left( A \right)}=\dfrac{\dfrac{2}{5}\times \dfrac{1}{2}}{\dfrac{17}{60}}=\dfrac{12}{17}\].
(ii) We have to find the probability of getting \[ON\] from \[CLIFTON\] given that the letters \[ON\] are already on the envelope.
Probability of getting \[ON\] from \[CLIFTON\] given that \[ON\] is already on the envelope \[=P\left( B|A \right)=\dfrac{P\left( A|C \right)P\left( C \right)}{P\left( A \right)}=\dfrac{\dfrac{1}{6}\times \dfrac{1}{2}}{\dfrac{17}{60}}=\dfrac{5}{17}\].
Hence, the probability of getting \[ON\] from \[LONDON\] is \[\dfrac{12}{17}\] and from \[CLIFTON\] is \[\dfrac{5}{17}\].
Note: Probability of any event describes how likely an event is to occur or how likely it is that a proposition is true. The value of probability of any event always lies in the range \[\left[ 0,1 \right]\] where having \[0\] probability indicates that the event is impossible to happen, while having probability equal to \[1\] indicates that the event will surely happen. Conditional probability of an event \[A\] is the probability of occurrence of event \[A\] given that event \[B\] has already occurred.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE