Answer
Verified
441.3k+ views
Hint: Determine the speed of source along the line of sight of the observer. To do so, you have to determine the angle made by the speed of the locomotive and speed of the locomotive along the line of sight of the observer. Use Doppler’s formula for apparent frequency when both source and observer are moving towards each other.
Formula used:
Apparent frequency, \[{f_{app}} = f\left( {\dfrac{v}{{v - {v_S}}}} \right)\]
Here, f is the original frequency, v is the speed of sound and \[{v_S}\] is the speed of source.
Complete step by step answer:
As we can see this is the case of both observer and source are moving towards each other but the direction is perpendicular to each other. We have to determine the speed of the source along the line of sight of the observer.
Let’s determine the distance AC using Pythagoras theorem as follows,
\[AC = \sqrt {{{\left( {AB} \right)}^2} + {{\left( {BC} \right)}^2}} \]
Substituting 1 mile for AB and 0.60 mile for BC in the above equation, we get,
\[AC = \sqrt {{{\left( 1 \right)}^2} + {{\left( {0.6} \right)}^2}} \]
\[ \Rightarrow AC = 1.166\,{\text{mile}}\]
Let’s determine the angle \[\theta \] as follows,
\[\cos \theta = \dfrac{{AB}}{{AC}}\]
Substituting 1 mile for AB and 1.166 mile for AC in the above equation, we get,
\[\cos \theta = \dfrac{1}{{1.166}}\]
\[ \Rightarrow \cos \theta = 0.857\]
We have the speed of the source along the line of sight is,
\[{v_S} = {v_L}\cos \theta \]
Substituting 80 miles/hr for \[{v_L}\] and 0.857 for \[\cos \theta \] in the above equation, we get,
\[{v_S} = \left( {80\,{\text{mile/hr}}} \right)\left( {\dfrac{{1\,{\text{hr}}}}{{3600\,{\text{s}}}}} \right)\left( {0.857} \right)\]
\[ \Rightarrow {v_S} = \left( {80\,{\text{mile/hr}}} \right)\left( {\dfrac{{1\,{\text{hr}}}}{{3600\,{\text{s}}}}} \right)\left( {0.857} \right)\]
\[ \Rightarrow {v_S} = 0.019\,{\text{miles/s}}\]
Using Doppler’s formula for apparent frequency when both source and observer is moving, we have,
\[{f_{app}} = f\left( {\dfrac{v}{{v - {v_S}}}} \right)\]
Here, f is the original frequency, v is the speed of sound and \[{v_S}\] is the speed of source.
Substituting 400 Hz for f, 0.200 miles/s for v and 0.019 miles/s for \[{v_S}\] in the above equation, we get,
\[{f_{app}} = \left( {400} \right)\left( {\dfrac{{0.200}}{{0.200 - 0.019}}} \right)\]
\[ \Rightarrow {f_{app}} = \left( {400} \right)\left( {1.105} \right)\]
\[ \therefore {f_{app}} = 442\,{\text{Hz}}\]
So, the correct answer is option B.
Note:Make sure that the unit of speed of sound and speed of the observer is the same. In the solution, we have converted the unit from mile/hr to mile/s since the speed of sound is in miles/s. When the source and observer are moving towards each other, the sign of the velocity of source should be negative in the denominator so as the apparent frequency increases.
Formula used:
Apparent frequency, \[{f_{app}} = f\left( {\dfrac{v}{{v - {v_S}}}} \right)\]
Here, f is the original frequency, v is the speed of sound and \[{v_S}\] is the speed of source.
Complete step by step answer:
As we can see this is the case of both observer and source are moving towards each other but the direction is perpendicular to each other. We have to determine the speed of the source along the line of sight of the observer.
Let’s determine the distance AC using Pythagoras theorem as follows,
\[AC = \sqrt {{{\left( {AB} \right)}^2} + {{\left( {BC} \right)}^2}} \]
Substituting 1 mile for AB and 0.60 mile for BC in the above equation, we get,
\[AC = \sqrt {{{\left( 1 \right)}^2} + {{\left( {0.6} \right)}^2}} \]
\[ \Rightarrow AC = 1.166\,{\text{mile}}\]
Let’s determine the angle \[\theta \] as follows,
\[\cos \theta = \dfrac{{AB}}{{AC}}\]
Substituting 1 mile for AB and 1.166 mile for AC in the above equation, we get,
\[\cos \theta = \dfrac{1}{{1.166}}\]
\[ \Rightarrow \cos \theta = 0.857\]
We have the speed of the source along the line of sight is,
\[{v_S} = {v_L}\cos \theta \]
Substituting 80 miles/hr for \[{v_L}\] and 0.857 for \[\cos \theta \] in the above equation, we get,
\[{v_S} = \left( {80\,{\text{mile/hr}}} \right)\left( {\dfrac{{1\,{\text{hr}}}}{{3600\,{\text{s}}}}} \right)\left( {0.857} \right)\]
\[ \Rightarrow {v_S} = \left( {80\,{\text{mile/hr}}} \right)\left( {\dfrac{{1\,{\text{hr}}}}{{3600\,{\text{s}}}}} \right)\left( {0.857} \right)\]
\[ \Rightarrow {v_S} = 0.019\,{\text{miles/s}}\]
Using Doppler’s formula for apparent frequency when both source and observer is moving, we have,
\[{f_{app}} = f\left( {\dfrac{v}{{v - {v_S}}}} \right)\]
Here, f is the original frequency, v is the speed of sound and \[{v_S}\] is the speed of source.
Substituting 400 Hz for f, 0.200 miles/s for v and 0.019 miles/s for \[{v_S}\] in the above equation, we get,
\[{f_{app}} = \left( {400} \right)\left( {\dfrac{{0.200}}{{0.200 - 0.019}}} \right)\]
\[ \Rightarrow {f_{app}} = \left( {400} \right)\left( {1.105} \right)\]
\[ \therefore {f_{app}} = 442\,{\text{Hz}}\]
So, the correct answer is option B.
Note:Make sure that the unit of speed of sound and speed of the observer is the same. In the solution, we have converted the unit from mile/hr to mile/s since the speed of sound is in miles/s. When the source and observer are moving towards each other, the sign of the velocity of source should be negative in the denominator so as the apparent frequency increases.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers