Answer
Verified
501.6k+ views
Hint – Use probability distribution of random variables. Probability distribution provides the possibility of presence of different outputs.
In a lot of 100 watches we know that 10 are defective.
We have to select 8 watches one by one without replacement.
Let X denote the number of defective watches in 8 draws and let P be the probability of selecting a defective watch in a draw.
Now, X follows binomial distribution with parameters ${\text{n = 8}}$ and ${\text{p = }}\dfrac{{10}}{{100}} = \dfrac{1}{{10}}$ because we have total 100 watches out of which 10 are defective.
Now ${\text{P}}\left( {X = r} \right) = {}^n{c_r}{\left( p \right)^r}{\left( {1 - p} \right)^{n - r}}$
Using the above concept
$P\left( {X = r} \right) = {}^8{c_r}{\left( {\dfrac{1}{{10}}} \right)^r}{\left( {\dfrac{9}{{10}}} \right)^{8 - r}}$Where our ${\text{where our r = 0,1,2}}....{\text{8}}$
Now we are asked to find the probability that at least one defective watch is drawn.
So we have to find ${\text{P}}\left( {X > = 1} \right)$
Now ${\text{P}}\left( {X > = 1} \right) = 1 - P\left( {X = 0} \right)$
This is equal to ${\text{1 - }}{}^8{c_0}{\left( {\dfrac{1}{{10}}} \right)^0}{\left( {\dfrac{9}{8}} \right)^8} = 1 - {\left( {\dfrac{9}{8}} \right)^8}$
Hence the value of required ${\text{x = 8}}$
Note –Whenever we face such a type of problem statement the key concept that we need to recall is the concept of probability distribution of random variables .This helps to solve such a type of question and it will get you on the right track to reach the answer.
In a lot of 100 watches we know that 10 are defective.
We have to select 8 watches one by one without replacement.
Let X denote the number of defective watches in 8 draws and let P be the probability of selecting a defective watch in a draw.
Now, X follows binomial distribution with parameters ${\text{n = 8}}$ and ${\text{p = }}\dfrac{{10}}{{100}} = \dfrac{1}{{10}}$ because we have total 100 watches out of which 10 are defective.
Now ${\text{P}}\left( {X = r} \right) = {}^n{c_r}{\left( p \right)^r}{\left( {1 - p} \right)^{n - r}}$
Using the above concept
$P\left( {X = r} \right) = {}^8{c_r}{\left( {\dfrac{1}{{10}}} \right)^r}{\left( {\dfrac{9}{{10}}} \right)^{8 - r}}$Where our ${\text{where our r = 0,1,2}}....{\text{8}}$
Now we are asked to find the probability that at least one defective watch is drawn.
So we have to find ${\text{P}}\left( {X > = 1} \right)$
Now ${\text{P}}\left( {X > = 1} \right) = 1 - P\left( {X = 0} \right)$
This is equal to ${\text{1 - }}{}^8{c_0}{\left( {\dfrac{1}{{10}}} \right)^0}{\left( {\dfrac{9}{8}} \right)^8} = 1 - {\left( {\dfrac{9}{8}} \right)^8}$
Hence the value of required ${\text{x = 8}}$
Note –Whenever we face such a type of problem statement the key concept that we need to recall is the concept of probability distribution of random variables .This helps to solve such a type of question and it will get you on the right track to reach the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE