Answer
Verified
99.9k+ views
Hint: We are given the magnetic dipole in a constant magnetic field and are asked about the change in torque when there is a change in potential energy. Thus, we will take a formula of potential energy and then discuss the change in it. Then, we will take a formula for torque on a magnetic dipole. Then finally we will try to connect the change in both these parameters.
Formula Used
$U = - \vec \mu .\vec B = - \mu B\cos \theta $
Where, $U$ is the potential energy on a magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ .
$\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
Where, $\vec \tau $ is the torque acting on the magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ . $\hat n$ is the direction of the torque which is perpendicular to the plane containing $\vec \mu $ and $\vec B$ .
Step By Step Solution
We know,
Potential energy of the magnetic dipole, $U = - \vec \mu .\vec B = - \mu B\cos \theta $
Now,
The magnetic dipole moment ($\vec \mu $) and magnetic field ($\vec B$) are constant parameters, only the $\cos \theta $ is the only varying parameter.
Now,
$\cos \theta $ is maximum when $\cos \theta = 1$ or $\theta = 2n\pi ;n = 0,1,2,...$ and then $\cos \theta $ is minimum when $\cos \theta = - 1$ or $\theta = (2n - 1)\pi ;n = 0,1,2,3,...$.
Also,
We know,
Torque acting on the magnetic dipole, $\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
From this, we will only take the magnitude of the torque in order to compare the change with the potential energy change.
Thus,
$|\vec \tau | = \mu B\sin \theta $
Out of here also only the $\sin \theta $ is the varying parameter.
Now,
$\sin \theta $ is maximum when $\sin \theta = 1$ or $\theta = (2n + 1)\dfrac{\pi }{2};n = 1,2,3,...$ and $\sin \theta $ is minimum when $\sin \theta = 0$ or $\theta = n\pi ;n = 0,1,2,...$.
Thus, we can say that the points when the value of $\cos \theta $ is maximum when $\sin \theta $ is minimum and vice versa. Broadly speaking, when potential energy is zero, then the torque is maximum.
Hence, the answer is (C).
Note: We were asked to find the relation between potential energy and torque of the magnetic dipole. If we were asked for the relation between some other parameters, the calculations would be somewhat different but the workflow remains the same.
Formula Used
$U = - \vec \mu .\vec B = - \mu B\cos \theta $
Where, $U$ is the potential energy on a magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ .
$\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
Where, $\vec \tau $ is the torque acting on the magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ . $\hat n$ is the direction of the torque which is perpendicular to the plane containing $\vec \mu $ and $\vec B$ .
Step By Step Solution
We know,
Potential energy of the magnetic dipole, $U = - \vec \mu .\vec B = - \mu B\cos \theta $
Now,
The magnetic dipole moment ($\vec \mu $) and magnetic field ($\vec B$) are constant parameters, only the $\cos \theta $ is the only varying parameter.
Now,
$\cos \theta $ is maximum when $\cos \theta = 1$ or $\theta = 2n\pi ;n = 0,1,2,...$ and then $\cos \theta $ is minimum when $\cos \theta = - 1$ or $\theta = (2n - 1)\pi ;n = 0,1,2,3,...$.
Also,
We know,
Torque acting on the magnetic dipole, $\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
From this, we will only take the magnitude of the torque in order to compare the change with the potential energy change.
Thus,
$|\vec \tau | = \mu B\sin \theta $
Out of here also only the $\sin \theta $ is the varying parameter.
Now,
$\sin \theta $ is maximum when $\sin \theta = 1$ or $\theta = (2n + 1)\dfrac{\pi }{2};n = 1,2,3,...$ and $\sin \theta $ is minimum when $\sin \theta = 0$ or $\theta = n\pi ;n = 0,1,2,...$.
Thus, we can say that the points when the value of $\cos \theta $ is maximum when $\sin \theta $ is minimum and vice versa. Broadly speaking, when potential energy is zero, then the torque is maximum.
Hence, the answer is (C).
Note: We were asked to find the relation between potential energy and torque of the magnetic dipole. If we were asked for the relation between some other parameters, the calculations would be somewhat different but the workflow remains the same.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main