
A man invested rupees 16000 at a simple interest rate of 8% per annum for 2 years. had he invested the sum at a compound interest rate of 8% per annum for the same period, how much more would have been earned?
A. Rs. 102.40
B. Rs. 201.85
C. Rs. 100
D. Rs. 95.81
Answer
605.1k+ views
Hint- To solve this question, we need to use the basic formulas of simple interest and compound interest.
Simple Interest (SI) = $\dfrac{{{{P \times T \times R}}}}{{{\text{100}}}}$
Compound Interest(C.I.)= P${\left( {{\text{1 + }}\dfrac{{\text{r}}}{{\text{n}}}} \right)^{{\text{nt}}}}$−P
Where,
C.I.$ \to $Compound Interest
P $ \to $ Principal Amount
A $ \to $ Total Accumulated Amount
r $ \to $ Rate of Interest
n $ \to $ Compounding Frequency Per Annum
t $ \to $ Time (in Years)
Complete step-by-step answer:
Now, using above formula-
Simple Interest (SI) = $\dfrac{{{{P \times T \times R}}}}{{{\text{100}}}}$
= $\dfrac{{16000 \times 2 \times 8}}{{100}}$
= 2560 Rs.
Compound Interest= P${\left( {{\text{1 + }}\dfrac{{\text{r}}}{{\text{n}}}} \right)^{{\text{nt}}}}$−P
= 16000${\left( {1 + \dfrac{8}{{100}}} \right)^2}$- 16000
=16000${\left( {\dfrac{{27}}{{25}}} \right)^2}$- 16000
= 18662.40 – 16000
= 2662.40 Rs.
Diff of interest= (2662.40-2560)Rs.=102.40 Rs.
Therefore, option (A) is the correct answer.
Note- After the calculation for S.I. is done, the principal has to be added to it to get the total amount that the borrower has to give or the lender will collect. This is called total amount and its formula is given as A = P + S.I.
Simple Interest (SI) = $\dfrac{{{{P \times T \times R}}}}{{{\text{100}}}}$
Compound Interest(C.I.)= P${\left( {{\text{1 + }}\dfrac{{\text{r}}}{{\text{n}}}} \right)^{{\text{nt}}}}$−P
Where,
C.I.$ \to $Compound Interest
P $ \to $ Principal Amount
A $ \to $ Total Accumulated Amount
r $ \to $ Rate of Interest
n $ \to $ Compounding Frequency Per Annum
t $ \to $ Time (in Years)
Complete step-by-step answer:
Now, using above formula-
Simple Interest (SI) = $\dfrac{{{{P \times T \times R}}}}{{{\text{100}}}}$
= $\dfrac{{16000 \times 2 \times 8}}{{100}}$
= 2560 Rs.
Compound Interest= P${\left( {{\text{1 + }}\dfrac{{\text{r}}}{{\text{n}}}} \right)^{{\text{nt}}}}$−P
= 16000${\left( {1 + \dfrac{8}{{100}}} \right)^2}$- 16000
=16000${\left( {\dfrac{{27}}{{25}}} \right)^2}$- 16000
= 18662.40 – 16000
= 2662.40 Rs.
Diff of interest= (2662.40-2560)Rs.=102.40 Rs.
Therefore, option (A) is the correct answer.
Note- After the calculation for S.I. is done, the principal has to be added to it to get the total amount that the borrower has to give or the lender will collect. This is called total amount and its formula is given as A = P + S.I.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Full form of STD, ISD and PCO

What are gulf countries and why they are called Gulf class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE


