Answer
Verified
444.6k+ views
Hint: Velocity of an object is the rate of change of position. It is a vector quantity and thus, has both magnitude and direction.
The velocity of man and relative velocity of rain is given. The relative velocity of the object A with respect to B is defined as the velocity of object A in the rest frame of object B.
First, resolve the velocity of man and relative velocity of rain in its vector components, obtain velocity of rain with respect to ground. Then, after man increases his velocity, obtain relative velocity of rain.
Complete step-by-step answer:
Velocity of an object is defined as its displacement per unit time. It is a vector.
Relative velocity of the object A with respect to B tells us the velocity of object A in the rest frame of object B.
The observer is moving with velocity ${{v}_{0}}$ downward the inclined plane as shown. We resolve the velocity of man in direction of motion and perpendicular to direction of motion as shown in figure and assume that x-axis lies along inclined plane and y-axis lies perpendicular to it. The velocity vector of man can be written as
${{\mathbf{v}}_{man}}=-{{v}_{0}}\,\hat{i}$
The relative velocity of rain with respect to man is $2{{v}_{0}}$ towards the man horizontally. Therefore, velocity vector of rain with respect to man can be written as
${{\mathbf{v}}_{rain,man}}=2{{v}_{0}}\cos \theta \,\,\hat{i}-2{{v}_{0}}\sin \theta \,\,\hat{j}$
$\because {{\mathbf{v}}_{rain,man}}={{\mathbf{v}}_{rain}}-{{\mathbf{v}}_{man}}\Rightarrow {{\mathbf{v}}_{rain}}={{\mathbf{v}}_{man}}+{{\mathbf{v}}_{rain,man}}$${{\mathbf{v}}_{rain}}=-3{{v}_{0}}\cos \theta \,\,\hat{i}-3{{v}_{0}}\sin \theta \,\,\hat{j}$
We get velocity of rain with respect to ground as
${{\mathbf{v}}_{rain}}=\left( 2{{v}_{0}}\cos \theta \,\,\hat{i}-2{{v}_{0}}\sin \theta \,\,\hat{j} \right)+\left( -{{v}_{0}}\,\,\hat{i} \right)$
${{\mathbf{v}}_{rain}}=(2{{v}_{0}}\cos \theta \,-{{v}_{0}})\hat{i}-2{{v}_{0}}\sin \theta \,\,\hat{j}$
If man increases his velocity to $2{{v}_{0}}$, his velocity becomes
$\mathbf{v}{{'}_{man}}=-2{{v}_{0}}\,\,\hat{i}$
The velocity of rain drops as observed by man after increasing his speed is the relative velocity i.e.
$\mathbf{v}{{'}_{rain,man}}=\mathbf{v}{{'}_{rain}}-\mathbf{v}{{'}_{man}}$
$\Rightarrow \mathbf{v}{{'}_{rain,man}}=[(2{{v}_{0}}\cos \theta \,-{{v}_{0}})\hat{i}-2{{v}_{0}}\sin \theta \,\hat{j}]-(-2{{v}_{0}}\,\,\hat{i})$
$\Rightarrow \mathbf{v}{{'}_{rain,man}}={{v}_{0}}[(2\cos \theta +1)\hat{i}-2\sin \theta \,\,\hat{j}$
Magnitude of velocity of rain is
$\left| {{\mathbf{v}}_{rain}} \right|=\sqrt{{{v}_{0}}^{2}[{{(2\cos \theta +1)}^{2}}+{{\sin }^{2}}\theta }$
Since, we have $\theta=37^\circ$, $\cos \theta =\dfrac{4}{5}$ and $\sin \theta =\dfrac{3}{5}$. We substitute these values and get
$\left| {{\mathbf{v}}_{rain}} \right|={{v}_{0}}\sqrt{{{\left( 2\times \dfrac{4}{5}+1 \right)}^{2}}+{{\left( \dfrac{3}{5} \right)}^{2}}}={{v}_{0}}\sqrt{\dfrac{41}{5}}$
Hence, option A is correct.
So, the correct answer is “Option A”.
Note: Velocity is a vector quantity and has both magnitude and direction.
The relative velocity of an object A with respect to B is defined as its velocity in the rest frame of object B.
Vector sum of any two quantities is the sum of their corresponding components.
The velocity of man and relative velocity of rain is given. The relative velocity of the object A with respect to B is defined as the velocity of object A in the rest frame of object B.
First, resolve the velocity of man and relative velocity of rain in its vector components, obtain velocity of rain with respect to ground. Then, after man increases his velocity, obtain relative velocity of rain.
Complete step-by-step answer:
Velocity of an object is defined as its displacement per unit time. It is a vector.
Relative velocity of the object A with respect to B tells us the velocity of object A in the rest frame of object B.
The observer is moving with velocity ${{v}_{0}}$ downward the inclined plane as shown. We resolve the velocity of man in direction of motion and perpendicular to direction of motion as shown in figure and assume that x-axis lies along inclined plane and y-axis lies perpendicular to it. The velocity vector of man can be written as
${{\mathbf{v}}_{man}}=-{{v}_{0}}\,\hat{i}$
The relative velocity of rain with respect to man is $2{{v}_{0}}$ towards the man horizontally. Therefore, velocity vector of rain with respect to man can be written as
${{\mathbf{v}}_{rain,man}}=2{{v}_{0}}\cos \theta \,\,\hat{i}-2{{v}_{0}}\sin \theta \,\,\hat{j}$
$\because {{\mathbf{v}}_{rain,man}}={{\mathbf{v}}_{rain}}-{{\mathbf{v}}_{man}}\Rightarrow {{\mathbf{v}}_{rain}}={{\mathbf{v}}_{man}}+{{\mathbf{v}}_{rain,man}}$${{\mathbf{v}}_{rain}}=-3{{v}_{0}}\cos \theta \,\,\hat{i}-3{{v}_{0}}\sin \theta \,\,\hat{j}$
We get velocity of rain with respect to ground as
${{\mathbf{v}}_{rain}}=\left( 2{{v}_{0}}\cos \theta \,\,\hat{i}-2{{v}_{0}}\sin \theta \,\,\hat{j} \right)+\left( -{{v}_{0}}\,\,\hat{i} \right)$
${{\mathbf{v}}_{rain}}=(2{{v}_{0}}\cos \theta \,-{{v}_{0}})\hat{i}-2{{v}_{0}}\sin \theta \,\,\hat{j}$
If man increases his velocity to $2{{v}_{0}}$, his velocity becomes
$\mathbf{v}{{'}_{man}}=-2{{v}_{0}}\,\,\hat{i}$
The velocity of rain drops as observed by man after increasing his speed is the relative velocity i.e.
$\mathbf{v}{{'}_{rain,man}}=\mathbf{v}{{'}_{rain}}-\mathbf{v}{{'}_{man}}$
$\Rightarrow \mathbf{v}{{'}_{rain,man}}=[(2{{v}_{0}}\cos \theta \,-{{v}_{0}})\hat{i}-2{{v}_{0}}\sin \theta \,\hat{j}]-(-2{{v}_{0}}\,\,\hat{i})$
$\Rightarrow \mathbf{v}{{'}_{rain,man}}={{v}_{0}}[(2\cos \theta +1)\hat{i}-2\sin \theta \,\,\hat{j}$
Magnitude of velocity of rain is
$\left| {{\mathbf{v}}_{rain}} \right|=\sqrt{{{v}_{0}}^{2}[{{(2\cos \theta +1)}^{2}}+{{\sin }^{2}}\theta }$
Since, we have $\theta=37^\circ$, $\cos \theta =\dfrac{4}{5}$ and $\sin \theta =\dfrac{3}{5}$. We substitute these values and get
$\left| {{\mathbf{v}}_{rain}} \right|={{v}_{0}}\sqrt{{{\left( 2\times \dfrac{4}{5}+1 \right)}^{2}}+{{\left( \dfrac{3}{5} \right)}^{2}}}={{v}_{0}}\sqrt{\dfrac{41}{5}}$
Hence, option A is correct.
So, the correct answer is “Option A”.
Note: Velocity is a vector quantity and has both magnitude and direction.
The relative velocity of an object A with respect to B is defined as its velocity in the rest frame of object B.
Vector sum of any two quantities is the sum of their corresponding components.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths