
A man on a certain planet throws a body of mass $500gm$ with a velocity of $10m/s$ and catches it after $8$ seconds. Find the weight of the body on the planet.
Answer
416.1k+ views
Hint: In order to answer this question, to find the weight of the given body on the planet, we will first calculate the acceleration due to gravity with the help of the given initial velocity of the body and the time given of catching. And after that we can find the weight, as mass is given.
Complete step by step answer:
Let the acceleration due to gravity of the planet is $g$.
So, we have the formula in which it show the relation of time and acceleration:
$\therefore t = \dfrac{{2u}}{g}$
Here, $t$ is the time.
$u$ is the initial velocity.
and $g$ is the acceleration due to gravity of the planet.
$
\Rightarrow 8 = \dfrac{{2 \times 10}}{g} \\
\Rightarrow g = \dfrac{{20}}{8}m.{s^{ - 2}} \\
$
Now, we can find the weight of the body by applying the formula which relate the weight, mass and acceleration due to gravity:
$\therefore Weight\,of\,the\,body = m.g = \dfrac{{500}}{{1000}} \times \dfrac{{20}}{8} = \dfrac{{10}}{8}N$
Hence, the required weight of the body on the planet is $\dfrac{{10}}{8}N$ or $1.25N$.
Note: Now, a question arises here that why do we use Kilograms to measure weight instead of Newton in certain conditions? So, mass is the same everywhere on earth, weight is not - it can vary as much as \[0.7\% \] from the North Pole (heavy) to the mountains of Peru (light). This is in part caused by the rotation of the earth, and in part by the fact that the earth's surface is not (quite) a sphere. Or in simplest words, on the other planets except earth, weight will be often measured in the mass due to the different gravitational forces.
Complete step by step answer:
Let the acceleration due to gravity of the planet is $g$.
So, we have the formula in which it show the relation of time and acceleration:
$\therefore t = \dfrac{{2u}}{g}$
Here, $t$ is the time.
$u$ is the initial velocity.
and $g$ is the acceleration due to gravity of the planet.
$
\Rightarrow 8 = \dfrac{{2 \times 10}}{g} \\
\Rightarrow g = \dfrac{{20}}{8}m.{s^{ - 2}} \\
$
Now, we can find the weight of the body by applying the formula which relate the weight, mass and acceleration due to gravity:
$\therefore Weight\,of\,the\,body = m.g = \dfrac{{500}}{{1000}} \times \dfrac{{20}}{8} = \dfrac{{10}}{8}N$
Hence, the required weight of the body on the planet is $\dfrac{{10}}{8}N$ or $1.25N$.
Note: Now, a question arises here that why do we use Kilograms to measure weight instead of Newton in certain conditions? So, mass is the same everywhere on earth, weight is not - it can vary as much as \[0.7\% \] from the North Pole (heavy) to the mountains of Peru (light). This is in part caused by the rotation of the earth, and in part by the fact that the earth's surface is not (quite) a sphere. Or in simplest words, on the other planets except earth, weight will be often measured in the mass due to the different gravitational forces.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE
