
A man on a certain planet throws a body of mass $500gm$ with a velocity of $10m/s$ and catches it after $8$ seconds. Find the weight of the body on the planet.
Answer
505.8k+ views
Hint: In order to answer this question, to find the weight of the given body on the planet, we will first calculate the acceleration due to gravity with the help of the given initial velocity of the body and the time given of catching. And after that we can find the weight, as mass is given.
Complete step by step answer:
Let the acceleration due to gravity of the planet is $g$.
So, we have the formula in which it show the relation of time and acceleration:
$\therefore t = \dfrac{{2u}}{g}$
Here, $t$ is the time.
$u$ is the initial velocity.
and $g$ is the acceleration due to gravity of the planet.
$
\Rightarrow 8 = \dfrac{{2 \times 10}}{g} \\
\Rightarrow g = \dfrac{{20}}{8}m.{s^{ - 2}} \\
$
Now, we can find the weight of the body by applying the formula which relate the weight, mass and acceleration due to gravity:
$\therefore Weight\,of\,the\,body = m.g = \dfrac{{500}}{{1000}} \times \dfrac{{20}}{8} = \dfrac{{10}}{8}N$
Hence, the required weight of the body on the planet is $\dfrac{{10}}{8}N$ or $1.25N$.
Note: Now, a question arises here that why do we use Kilograms to measure weight instead of Newton in certain conditions? So, mass is the same everywhere on earth, weight is not - it can vary as much as \[0.7\% \] from the North Pole (heavy) to the mountains of Peru (light). This is in part caused by the rotation of the earth, and in part by the fact that the earth's surface is not (quite) a sphere. Or in simplest words, on the other planets except earth, weight will be often measured in the mass due to the different gravitational forces.
Complete step by step answer:
Let the acceleration due to gravity of the planet is $g$.
So, we have the formula in which it show the relation of time and acceleration:
$\therefore t = \dfrac{{2u}}{g}$
Here, $t$ is the time.
$u$ is the initial velocity.
and $g$ is the acceleration due to gravity of the planet.
$
\Rightarrow 8 = \dfrac{{2 \times 10}}{g} \\
\Rightarrow g = \dfrac{{20}}{8}m.{s^{ - 2}} \\
$
Now, we can find the weight of the body by applying the formula which relate the weight, mass and acceleration due to gravity:
$\therefore Weight\,of\,the\,body = m.g = \dfrac{{500}}{{1000}} \times \dfrac{{20}}{8} = \dfrac{{10}}{8}N$
Hence, the required weight of the body on the planet is $\dfrac{{10}}{8}N$ or $1.25N$.
Note: Now, a question arises here that why do we use Kilograms to measure weight instead of Newton in certain conditions? So, mass is the same everywhere on earth, weight is not - it can vary as much as \[0.7\% \] from the North Pole (heavy) to the mountains of Peru (light). This is in part caused by the rotation of the earth, and in part by the fact that the earth's surface is not (quite) a sphere. Or in simplest words, on the other planets except earth, weight will be often measured in the mass due to the different gravitational forces.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

