Answer
Verified
109.2k+ views
Hint: Average speed may be defined as the total time taken by the man to cover the total distance. In this question first calculate the total time taken by the man to cover 320 km distance and then divide it by total time.
We know that $\left[ {{\text{time}} = \dfrac{{{\text{distance}}}}{{{\text{speed}}}}} \right]$
Given that the man travels first $160km$ at a speed of $64km/hr$
Time taken to cover $160km$ is
$ \Rightarrow {t_1} = \dfrac{{160}}{{64}}hr$
And the next $160km$ travels at a speed of $80km/hr$
Time taken to cover next $160km$ is
$ \Rightarrow {t_2} = \dfrac{{160}}{{80}}hr$
Total time taken to cover a distance of $320km$ is given by adding time ${t_1}$ and ${t_2}$
$
t = {t_1} + {t_2} \\
t = \left( {\dfrac{{160}}{{64}} + \dfrac{{160}}{{80}}} \right)hr \\
t = \dfrac{9}{2}hr \\
$
The average speed is
$
{\text{avg}}{\text{.speed}} = \dfrac{{{\text{distance}}}}{{{\text{time}}}} \\
= \dfrac{{320}}{{\dfrac{9}{2}}}km/hr \\
= \dfrac{{640}}{9}km/hr \\
= 71.11km/hr \\
$
Hence, the average speed for the first 320 km of the tour is 71.11Km/hr.
So, option C is the correct option.
Note: These types of problems are commonly word problems which tell to find anyone of these distance, time, speed and average speed. In these types of problems remember the relation between speed, distance and time. Read the statement carefully and make the conditions accordingly to solve the problem.
We know that $\left[ {{\text{time}} = \dfrac{{{\text{distance}}}}{{{\text{speed}}}}} \right]$
Given that the man travels first $160km$ at a speed of $64km/hr$
Time taken to cover $160km$ is
$ \Rightarrow {t_1} = \dfrac{{160}}{{64}}hr$
And the next $160km$ travels at a speed of $80km/hr$
Time taken to cover next $160km$ is
$ \Rightarrow {t_2} = \dfrac{{160}}{{80}}hr$
Total time taken to cover a distance of $320km$ is given by adding time ${t_1}$ and ${t_2}$
$
t = {t_1} + {t_2} \\
t = \left( {\dfrac{{160}}{{64}} + \dfrac{{160}}{{80}}} \right)hr \\
t = \dfrac{9}{2}hr \\
$
The average speed is
$
{\text{avg}}{\text{.speed}} = \dfrac{{{\text{distance}}}}{{{\text{time}}}} \\
= \dfrac{{320}}{{\dfrac{9}{2}}}km/hr \\
= \dfrac{{640}}{9}km/hr \\
= 71.11km/hr \\
$
Hence, the average speed for the first 320 km of the tour is 71.11Km/hr.
So, option C is the correct option.
Note: These types of problems are commonly word problems which tell to find anyone of these distance, time, speed and average speed. In these types of problems remember the relation between speed, distance and time. Read the statement carefully and make the conditions accordingly to solve the problem.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main