Answer
Verified
503.1k+ views
Hint- Use the definitions of marginal cost, average cost, and standard procedure to find level output at average cost which is minimum.
Now the total cost is given as$c = \dfrac{{{q^3}}}{3} + 2q + 300$.
So firstly let’s calculate for (a) Marginal cost function
Marginal cost function = $\dfrac{{dc}}{{dq}} = \dfrac{d}{{dq}}\left( {\dfrac{{{q^3}}}{3} + 2q + 300} \right)$
The derivative gives us
$\dfrac{{dc}}{{dq}} = {q^2} + 2$ As derivative of ${x^n} = n{x^{n - 1}}$
So the marginal cost function is${q^2} + 2$.
Now let’s calculate for average cost function
Average cost function = $\dfrac{{total{\text{ cost}}}}{{number{\text{ of units produced}}}}$
Average cost = $\dfrac{c}{q} = \dfrac{{\dfrac{{{q^3}}}{3} + 2q + 300}}{q} = \dfrac{{{q^2}}}{3} + 2 + \dfrac{{300}}{q}$
So average cost function is $\dfrac{{{q^2}}}{3} + 2 + \dfrac{{300}}{q}$…………………………………… (1)
Now to find the level output at which average cost is minimum we simply need to put the derivative of the function of average cost equal to 0
That is $\dfrac{{d(Average{\text{ cost)}}}}{{dq}} = 0$
So we have using equation 1
$\dfrac{d}{{dq}}\left( {\dfrac{{{q^2}}}{3} + 2 + \dfrac{{300}}{q}} \right) = 0$
The derivative of this quantity is $\dfrac{{2q}}{3} - \dfrac{{300}}{{{q^2}}} = 0$
On further solving we get
$2{q^3} - 900 = 0$
Or ${q^3} = 450$
So the value of $q{ = ^3}\sqrt {450} $
Now let’s verify that this q corresponds to the minimum of the average cost function.
So $\dfrac{{{\partial ^2}(average{\text{ cost)}}}}{{\partial {q^2}}} < 0$
Let’s substitute the values we get $\dfrac{{{\partial ^2}}}{{\partial {q^2}}}\left( {\dfrac{{{q^2}}}{3} + 2 + \dfrac{{300}}{q}} \right) > 0$
Double derivative of this quantity is $\dfrac{2}{3} + \dfrac{{600}}{{{q^3}}}$…………………………………. (2)
Now on substitution of $q{ = ^3}\sqrt {450} $in above equation 2, equation 2 becomes $\dfrac{2}{3} + \dfrac{{600}}{{{{\left( {^3\sqrt {450} } \right)}^3}}} > 0$
Clearly it is positive hence it’s verified.
Note- The problem statement of this type is purely based upon the definition conceptuality of marginal function, average cost function and minimization of average cost function. The standard procedure as mentioned above leads to the answers in such types of problems.
Now the total cost is given as$c = \dfrac{{{q^3}}}{3} + 2q + 300$.
So firstly let’s calculate for (a) Marginal cost function
Marginal cost function = $\dfrac{{dc}}{{dq}} = \dfrac{d}{{dq}}\left( {\dfrac{{{q^3}}}{3} + 2q + 300} \right)$
The derivative gives us
$\dfrac{{dc}}{{dq}} = {q^2} + 2$ As derivative of ${x^n} = n{x^{n - 1}}$
So the marginal cost function is${q^2} + 2$.
Now let’s calculate for average cost function
Average cost function = $\dfrac{{total{\text{ cost}}}}{{number{\text{ of units produced}}}}$
Average cost = $\dfrac{c}{q} = \dfrac{{\dfrac{{{q^3}}}{3} + 2q + 300}}{q} = \dfrac{{{q^2}}}{3} + 2 + \dfrac{{300}}{q}$
So average cost function is $\dfrac{{{q^2}}}{3} + 2 + \dfrac{{300}}{q}$…………………………………… (1)
Now to find the level output at which average cost is minimum we simply need to put the derivative of the function of average cost equal to 0
That is $\dfrac{{d(Average{\text{ cost)}}}}{{dq}} = 0$
So we have using equation 1
$\dfrac{d}{{dq}}\left( {\dfrac{{{q^2}}}{3} + 2 + \dfrac{{300}}{q}} \right) = 0$
The derivative of this quantity is $\dfrac{{2q}}{3} - \dfrac{{300}}{{{q^2}}} = 0$
On further solving we get
$2{q^3} - 900 = 0$
Or ${q^3} = 450$
So the value of $q{ = ^3}\sqrt {450} $
Now let’s verify that this q corresponds to the minimum of the average cost function.
So $\dfrac{{{\partial ^2}(average{\text{ cost)}}}}{{\partial {q^2}}} < 0$
Let’s substitute the values we get $\dfrac{{{\partial ^2}}}{{\partial {q^2}}}\left( {\dfrac{{{q^2}}}{3} + 2 + \dfrac{{300}}{q}} \right) > 0$
Double derivative of this quantity is $\dfrac{2}{3} + \dfrac{{600}}{{{q^3}}}$…………………………………. (2)
Now on substitution of $q{ = ^3}\sqrt {450} $in above equation 2, equation 2 becomes $\dfrac{2}{3} + \dfrac{{600}}{{{{\left( {^3\sqrt {450} } \right)}^3}}} > 0$
Clearly it is positive hence it’s verified.
Note- The problem statement of this type is purely based upon the definition conceptuality of marginal function, average cost function and minimization of average cost function. The standard procedure as mentioned above leads to the answers in such types of problems.
Recently Updated Pages
The oxidation process involves class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
During the electrolysis of sodium ethanoate the gas class 11 maths JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE