Answer
Verified
460.8k+ views
Hint: To solve this question, we have to remember that a function $f:A \to B$ is a bijection if it is one-one as well as onto (surjection).
(i) one-one i.e. $f\left( x \right) = f\left( y \right) \Rightarrow x = y\forall x,y \in A$
(ii) onto i.e. for all $y \in B$, there exists $X \in A$ such that $f\left( x \right) = y$
Complete step-by-step answer:
Given that,
$f:R \to R,f\left( x \right) = \cos x$
We have to show that the given function is neither one-one nor onto (surjection).
So,
First, let us check for one-one.
Let x and y be two arbitrary elements of R (domain of f) such that $f\left( x \right) = f\left( y \right)$
Then,
$ \Rightarrow \cos x = \cos y$
We know that, $f\left( 0 \right) = \cos 0 = 1$ and $f\left( {2\pi } \right) = \cos 2\pi = 1$,
i.e. $f\left( 0 \right) = f\left( {2\pi } \right)$, but $0 \ne 2\pi $
hence, different elements in R may have the same image. So, it is not a one-one function.
Now, for surjection (onto).
Let y be an arbitrary element of R.
Then,
$ \Rightarrow f\left( x \right) = y$
Since, the value of cos x lies between -1 and 1, it follows that the range of $f\left( x \right)$ is not equal to its co-domain.
So, f is not a surjection.
Hence, we can say that the mapping $f:R \to R,f\left( x \right) = \cos x$ is neither one-one nor surjective.
Note: In this type of questions, we have to observe the properties of the given function such as its domain, co-domain and range. Using these properties, we can easily identify that either the given function is an injection, surjective or bijection. Through this, we will get the answer.
(i) one-one i.e. $f\left( x \right) = f\left( y \right) \Rightarrow x = y\forall x,y \in A$
(ii) onto i.e. for all $y \in B$, there exists $X \in A$ such that $f\left( x \right) = y$
Complete step-by-step answer:
Given that,
$f:R \to R,f\left( x \right) = \cos x$
We have to show that the given function is neither one-one nor onto (surjection).
So,
First, let us check for one-one.
Let x and y be two arbitrary elements of R (domain of f) such that $f\left( x \right) = f\left( y \right)$
Then,
$ \Rightarrow \cos x = \cos y$
We know that, $f\left( 0 \right) = \cos 0 = 1$ and $f\left( {2\pi } \right) = \cos 2\pi = 1$,
i.e. $f\left( 0 \right) = f\left( {2\pi } \right)$, but $0 \ne 2\pi $
hence, different elements in R may have the same image. So, it is not a one-one function.
Now, for surjection (onto).
Let y be an arbitrary element of R.
Then,
$ \Rightarrow f\left( x \right) = y$
Since, the value of cos x lies between -1 and 1, it follows that the range of $f\left( x \right)$ is not equal to its co-domain.
So, f is not a surjection.
Hence, we can say that the mapping $f:R \to R,f\left( x \right) = \cos x$ is neither one-one nor surjective.
Note: In this type of questions, we have to observe the properties of the given function such as its domain, co-domain and range. Using these properties, we can easily identify that either the given function is an injection, surjective or bijection. Through this, we will get the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE