Answer
Verified
431.7k+ views
Hint The change in potential energy is simply equal to the product of the surface tension and change in the total surface area of the mercury drops. The volume in the two states (large one drop and small big drop) are equal.
Formula used: In this solution we will be using the following formulae;
\[\Delta U = T4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)\], where \[\Delta U\] is the change in potential energy, \[R\] is the radius of the big drop of the liquid, \[N\] is the number of smaller drops, and \[T\] is the surface tension of the liquid.
\[V = \dfrac{4}{3}\pi {r^3}\], \[V\] is the volume of a sphere and \[r\] is the radius of the sphere. \[A = 4\pi {r^2}\] where \[A\] is the surface area of a sphere.
\[\Delta U = T\Delta A\] where \[\Delta A\] signifies the change in surface area of one big drop and that of the sum of many small drops.
Complete Step-by-Step solution:
Generally, for such a process, we the change in potential energy (which will be the energy expended) of the drops would be given by
\[\Delta U = T4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)\], where \[\Delta U\] is the change in potential energy, \[R\] is the radius of the big drop of the liquid, \[N\] is the number of smaller drops, and \[T\] is the surface tension of the liquid.
Hence, by inserting known values, we have
\[\Delta U = \left( {460 \times {{10}^{ - 3}}} \right)4\pi {\left( {0.01} \right)^2}\left( {{{\left( {{{10}^6}} \right)}^{\dfrac{1}{3}}} - 1} \right)\]
\[ \Rightarrow \Delta U = \left( {0.046} \right)4\pi {\left( {0.01} \right)^2}\left( {{{10}^2} - 1} \right)\]
Hence, by computation, we have
\[\Delta U = 0.057J\]
Thus the correct option is A.
Note: Generally, for such a process, the change potential energy (which will be the energy expended) of the drops would be given by
\[\Delta U = T\Delta A\]
Since, \[A = 4\pi {r^2}\] where \[A\] is the surface area of a sphere and \[r\] is the radius of the sphere.
Hence, we have
\[\Delta A = N4\pi {r^2} - 4\pi {R^2}\] where \[N\] is the number of drops and \[R\] is the radius of the big drop.
However, the volume is the same in both cases hence,
\[V = N\dfrac{4}{3}\pi {r^3} = \dfrac{4}{3}\pi {R^3}\]
So, by cancellation, we have
\[N{r^3} = R\]
\[ \Rightarrow r = {N^{ - \dfrac{1}{3}}}R\]
So, we have that
\[\Delta A = N4\pi {\left( {{N^{ - \dfrac{1}{3}}}R} \right)^2} - 4\pi {R^2} = N4\pi {N^{ - \dfrac{2}{3}}}{R^2} - 4\pi {R^2}\]
\[ \Rightarrow \Delta A = 4\pi {R^2}\left( {{N^{1 - \dfrac{1}{3}}} - 1} \right) = 4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)\]
Then the change in potential is
\[\Delta U = T\left[ {4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)} \right]\]
\[ \Rightarrow \Delta U = T4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)\] which is the formula.
Formula used: In this solution we will be using the following formulae;
\[\Delta U = T4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)\], where \[\Delta U\] is the change in potential energy, \[R\] is the radius of the big drop of the liquid, \[N\] is the number of smaller drops, and \[T\] is the surface tension of the liquid.
\[V = \dfrac{4}{3}\pi {r^3}\], \[V\] is the volume of a sphere and \[r\] is the radius of the sphere. \[A = 4\pi {r^2}\] where \[A\] is the surface area of a sphere.
\[\Delta U = T\Delta A\] where \[\Delta A\] signifies the change in surface area of one big drop and that of the sum of many small drops.
Complete Step-by-Step solution:
Generally, for such a process, we the change in potential energy (which will be the energy expended) of the drops would be given by
\[\Delta U = T4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)\], where \[\Delta U\] is the change in potential energy, \[R\] is the radius of the big drop of the liquid, \[N\] is the number of smaller drops, and \[T\] is the surface tension of the liquid.
Hence, by inserting known values, we have
\[\Delta U = \left( {460 \times {{10}^{ - 3}}} \right)4\pi {\left( {0.01} \right)^2}\left( {{{\left( {{{10}^6}} \right)}^{\dfrac{1}{3}}} - 1} \right)\]
\[ \Rightarrow \Delta U = \left( {0.046} \right)4\pi {\left( {0.01} \right)^2}\left( {{{10}^2} - 1} \right)\]
Hence, by computation, we have
\[\Delta U = 0.057J\]
Thus the correct option is A.
Note: Generally, for such a process, the change potential energy (which will be the energy expended) of the drops would be given by
\[\Delta U = T\Delta A\]
Since, \[A = 4\pi {r^2}\] where \[A\] is the surface area of a sphere and \[r\] is the radius of the sphere.
Hence, we have
\[\Delta A = N4\pi {r^2} - 4\pi {R^2}\] where \[N\] is the number of drops and \[R\] is the radius of the big drop.
However, the volume is the same in both cases hence,
\[V = N\dfrac{4}{3}\pi {r^3} = \dfrac{4}{3}\pi {R^3}\]
So, by cancellation, we have
\[N{r^3} = R\]
\[ \Rightarrow r = {N^{ - \dfrac{1}{3}}}R\]
So, we have that
\[\Delta A = N4\pi {\left( {{N^{ - \dfrac{1}{3}}}R} \right)^2} - 4\pi {R^2} = N4\pi {N^{ - \dfrac{2}{3}}}{R^2} - 4\pi {R^2}\]
\[ \Rightarrow \Delta A = 4\pi {R^2}\left( {{N^{1 - \dfrac{1}{3}}} - 1} \right) = 4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)\]
Then the change in potential is
\[\Delta U = T\left[ {4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)} \right]\]
\[ \Rightarrow \Delta U = T4\pi {R^2}\left( {{N^{\dfrac{1}{3}}} - 1} \right)\] which is the formula.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE