A milk container is made of metal sheet in the shape of frustum of a cone whose volume is $10459\dfrac{3}{7}c{{m}^{3}}$. The radii of its lower and upper circular ends are 8cm and 20cm respectively. Find the cost of the metal sheet used in making the container at the rate of $Rs.1.40\ per\ c{{m}^{3}}.\left( Use\ \pi =22.7 \right)$.
Answer
Verified
505.8k+ views
Hint: At first use the volume formula $\dfrac{\pi }{3}h\left( {{R}^{2}}+{{r}^{2}}+Rr \right)$ which is volume of frustum to get the value of ‘h’ or height. Now further use the data to get value of surface area using $\pi \left( R+r \right)\sqrt{{{\left( R-r \right)}^{2}}+{{h}^{2}}}+\pi {{R}^{2}}$ and then multiply with Rs.1.40 to find the cost.
Complete step-by-step answer:
In the question we are given a milk container which is in the shape of a frustum of a cone. We have to find the total surface area of the cone so as to get the cost of the metal sheet to cover the container.
The data or the dimensions of the frustum of the cone given are radii of its lower and upper circular surfaces are 8cm and 20cm respectively. The volume is already given as $10459\dfrac{3}{7}c{{m}^{3}}$.
To find the surface area we are given the formula with opening on the smaller side of base ‘r’ of frustum,
$\pi \left( R+r \right)\sqrt{{{\left( R-r \right)}^{2}}+{{h}^{2}}}+\pi {{R}^{2}}$
Where R, r are the radius of larger and smaller circular bases respectively and h is height.
The formula of volume is,
$\dfrac{\pi }{3}h\left( {{R}^{2}}+{{r}^{2}}+Rr \right)$
Where R, r are the radius of larger and smaller circular bases respectively and h is height.
The volume given is $10459\dfrac{3}{7}c{{m}^{3}}$ which can be written as $\dfrac{73216}{7}c{{m}^{3}}$.
Now it can be written as,
$\dfrac{\pi }{3}h\left( {{R}^{2}}+{{r}^{2}}+Rr \right)=\dfrac{73216}{7}c{{m}^{3}}$
Here $\pi =\dfrac{22}{7},R=20,r=8$.
So,
$\dfrac{1}{3}\times \dfrac{22}{7}\times h\left( {{20}^{2}}+{{8}^{2}}+20\times 8 \right)=\dfrac{73216}{7}$
Which can be written as,
$h\left( {{20}^{2}}+{{8}^{2}}+160 \right)=\dfrac{73216}{7}\times \dfrac{21}{22}$
Which can be further solved as,
$h\left( 624 \right)=9984$
So,
$h=\dfrac{9984}{624}=16cm$
Hence the height of the frustum of the cone is 16cm.
Now, we have to get the value of surface area of frustum with an opening on the circular base of radius ‘r’,
$\pi \left( R+r \right)\sqrt{{{\left( R-r \right)}^{2}}+{{h}^{2}}}+\pi {{R}^{2}}$
Here $R=20,r=8,h=16\ \And \ \pi =\dfrac{22}{7}$
So, the surface area is,
$=\dfrac{22}{7}\times \left\{ \left( 20+8 \right)\sqrt{{{\left( 20-8 \right)}^{2}}+{{16}^{2}}}+{{20}^{2}} \right\}$
Which can be calculated as,
$\dfrac{22}{7}\times 28\times \sqrt{{{12}^{2}}+{{16}^{2}}}+\dfrac{22}{7}\times {{\left( 20 \right)}^{2}}$
By doing calculations carefully we can write it as,
$\begin{align}
& \dfrac{22}{7}\times \left\{ 28\times \sqrt{400}+{{20}^{2}} \right\} \\
& =\dfrac{22}{7}\times \left\{ 560+4 \right\}=\dfrac{21120}{7}c{{m}^{2}} \\
\end{align}$
Hence, the area of metal sheet required is $\dfrac{21120}{7}c{{m}^{2}}$
Now for the costing it was given that for $1c{{m}^{2}}$ of metal material Rs.1.40 is required.
So, the total cost is $Rs.\left( \dfrac{21120}{7}\times 1.40 \right)$ which is equal to Rs. 4224.
Hence the cost of metal sheet is Rs. 4224.
Note: Students might get confused in this problem whether to include $\pi {{r}^{2}}$ in the surface area and costing or not. They should not include it because in the question we are given to find the area of the container which is opened in the circular base with a smaller radius.
Complete step-by-step answer:
In the question we are given a milk container which is in the shape of a frustum of a cone. We have to find the total surface area of the cone so as to get the cost of the metal sheet to cover the container.
The data or the dimensions of the frustum of the cone given are radii of its lower and upper circular surfaces are 8cm and 20cm respectively. The volume is already given as $10459\dfrac{3}{7}c{{m}^{3}}$.
To find the surface area we are given the formula with opening on the smaller side of base ‘r’ of frustum,
$\pi \left( R+r \right)\sqrt{{{\left( R-r \right)}^{2}}+{{h}^{2}}}+\pi {{R}^{2}}$
Where R, r are the radius of larger and smaller circular bases respectively and h is height.
The formula of volume is,
$\dfrac{\pi }{3}h\left( {{R}^{2}}+{{r}^{2}}+Rr \right)$
Where R, r are the radius of larger and smaller circular bases respectively and h is height.
The volume given is $10459\dfrac{3}{7}c{{m}^{3}}$ which can be written as $\dfrac{73216}{7}c{{m}^{3}}$.
Now it can be written as,
$\dfrac{\pi }{3}h\left( {{R}^{2}}+{{r}^{2}}+Rr \right)=\dfrac{73216}{7}c{{m}^{3}}$
Here $\pi =\dfrac{22}{7},R=20,r=8$.
So,
$\dfrac{1}{3}\times \dfrac{22}{7}\times h\left( {{20}^{2}}+{{8}^{2}}+20\times 8 \right)=\dfrac{73216}{7}$
Which can be written as,
$h\left( {{20}^{2}}+{{8}^{2}}+160 \right)=\dfrac{73216}{7}\times \dfrac{21}{22}$
Which can be further solved as,
$h\left( 624 \right)=9984$
So,
$h=\dfrac{9984}{624}=16cm$
Hence the height of the frustum of the cone is 16cm.
Now, we have to get the value of surface area of frustum with an opening on the circular base of radius ‘r’,
$\pi \left( R+r \right)\sqrt{{{\left( R-r \right)}^{2}}+{{h}^{2}}}+\pi {{R}^{2}}$
Here $R=20,r=8,h=16\ \And \ \pi =\dfrac{22}{7}$
So, the surface area is,
$=\dfrac{22}{7}\times \left\{ \left( 20+8 \right)\sqrt{{{\left( 20-8 \right)}^{2}}+{{16}^{2}}}+{{20}^{2}} \right\}$
Which can be calculated as,
$\dfrac{22}{7}\times 28\times \sqrt{{{12}^{2}}+{{16}^{2}}}+\dfrac{22}{7}\times {{\left( 20 \right)}^{2}}$
By doing calculations carefully we can write it as,
$\begin{align}
& \dfrac{22}{7}\times \left\{ 28\times \sqrt{400}+{{20}^{2}} \right\} \\
& =\dfrac{22}{7}\times \left\{ 560+4 \right\}=\dfrac{21120}{7}c{{m}^{2}} \\
\end{align}$
Hence, the area of metal sheet required is $\dfrac{21120}{7}c{{m}^{2}}$
Now for the costing it was given that for $1c{{m}^{2}}$ of metal material Rs.1.40 is required.
So, the total cost is $Rs.\left( \dfrac{21120}{7}\times 1.40 \right)$ which is equal to Rs. 4224.
Hence the cost of metal sheet is Rs. 4224.
Note: Students might get confused in this problem whether to include $\pi {{r}^{2}}$ in the surface area and costing or not. They should not include it because in the question we are given to find the area of the container which is opened in the circular base with a smaller radius.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE