
A \[\mu - \]-meson particle of charge equal to that of an electron, \[ - e\] and mass 208 times the mass of the electron moves in a circular orbit around the nucleus of charge \[ + 4e\]. Assuming the Bohr’s model of the atom to be applicable to this system, the inverse of wavelength of photons emitted when an electron jumps in the 4th orbit of the atom from infinity in terms of Rydberg constant is given by \[\alpha {R_H}\]. Find the value of \[\alpha /26\].
Answer
482.4k+ views
Hint: Use the mass-energy relation to determine the energy difference between the two orbits for meson. Since the meson has 208 times the mass of the electron, the energy difference will also be 208 times that of the electron. Use a formula for wavenumber from Bohr’s model to determine wave number for meson.
Formula used:
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
Complete step by step answer:When an electron jumps from higher orbit \[{n_2}\] to lower orbit \[{n_1}\], the difference in the energy of the orbit is given by Bohr’s atomic model as,
\[\Delta E = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\] …… (1)
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
We know that the difference in the energy is given as,
\[\Delta E = \dfrac{{hc}}{\lambda }\]
Therefore, the energy difference is inversely proportional to the wavelength of the electron. Therefore, the equation (1) is written as,
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
The term \[\dfrac{1}{\lambda }\] is known as wave number.
According to the mass-energy relation, the difference in the energy is,
\[\Delta E = m{c^2}\]
Here, m is the mass of the particle and c is the speed of light.
We have given that the mass is 208 times the mass of the electron. Therefore, the energy difference will also be 208 times that of the electron. Therefore, we can write,
\[\dfrac{1}{\lambda } = 208{R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Substitute 4 for Z, 4 for \[{n_1}\] and \[\infty \] for \[{n_2}\] in the above equation.
\[\dfrac{1}{\lambda } = 208{R_H}{\left( 4 \right)^2}\left( {\dfrac{1}{{{4^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{\lambda } = 208{R_H}\]
We have given that the wave-number for electrons is \[\alpha {R_H}\]. Since the given meson also follows Bohr’s model, we can write,
\[\alpha {R_H} = 208{R_H}\]
\[ \Rightarrow \alpha = 208\]
Therefore,
\[\dfrac{\alpha }{{26}} = \dfrac{{208}}{{26}} = 8\]
Therefore, the value of \[\dfrac{\alpha }{{26}}\] is 8.
Note:Rydberg constant \[{R_H}\] consists of all the constants including mass of the electron m, charge e, speed of light c and Planck’s constant h. therefore, do not consider any other constants other than Z in the above formula. The mass-energy relation implies the energy possessed by the rest particle.
Formula used:
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
Complete step by step answer:When an electron jumps from higher orbit \[{n_2}\] to lower orbit \[{n_1}\], the difference in the energy of the orbit is given by Bohr’s atomic model as,
\[\Delta E = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\] …… (1)
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
We know that the difference in the energy is given as,
\[\Delta E = \dfrac{{hc}}{\lambda }\]
Therefore, the energy difference is inversely proportional to the wavelength of the electron. Therefore, the equation (1) is written as,
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
The term \[\dfrac{1}{\lambda }\] is known as wave number.
According to the mass-energy relation, the difference in the energy is,
\[\Delta E = m{c^2}\]
Here, m is the mass of the particle and c is the speed of light.
We have given that the mass is 208 times the mass of the electron. Therefore, the energy difference will also be 208 times that of the electron. Therefore, we can write,
\[\dfrac{1}{\lambda } = 208{R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Substitute 4 for Z, 4 for \[{n_1}\] and \[\infty \] for \[{n_2}\] in the above equation.
\[\dfrac{1}{\lambda } = 208{R_H}{\left( 4 \right)^2}\left( {\dfrac{1}{{{4^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{\lambda } = 208{R_H}\]
We have given that the wave-number for electrons is \[\alpha {R_H}\]. Since the given meson also follows Bohr’s model, we can write,
\[\alpha {R_H} = 208{R_H}\]
\[ \Rightarrow \alpha = 208\]
Therefore,
\[\dfrac{\alpha }{{26}} = \dfrac{{208}}{{26}} = 8\]
Therefore, the value of \[\dfrac{\alpha }{{26}}\] is 8.
Note:Rydberg constant \[{R_H}\] consists of all the constants including mass of the electron m, charge e, speed of light c and Planck’s constant h. therefore, do not consider any other constants other than Z in the above formula. The mass-energy relation implies the energy possessed by the rest particle.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
