Answer
Verified
462k+ views
Hint: Use the mass-energy relation to determine the energy difference between the two orbits for meson. Since the meson has 208 times the mass of the electron, the energy difference will also be 208 times that of the electron. Use a formula for wavenumber from Bohr’s model to determine wave number for meson.
Formula used:
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
Complete step by step answer:When an electron jumps from higher orbit \[{n_2}\] to lower orbit \[{n_1}\], the difference in the energy of the orbit is given by Bohr’s atomic model as,
\[\Delta E = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\] …… (1)
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
We know that the difference in the energy is given as,
\[\Delta E = \dfrac{{hc}}{\lambda }\]
Therefore, the energy difference is inversely proportional to the wavelength of the electron. Therefore, the equation (1) is written as,
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
The term \[\dfrac{1}{\lambda }\] is known as wave number.
According to the mass-energy relation, the difference in the energy is,
\[\Delta E = m{c^2}\]
Here, m is the mass of the particle and c is the speed of light.
We have given that the mass is 208 times the mass of the electron. Therefore, the energy difference will also be 208 times that of the electron. Therefore, we can write,
\[\dfrac{1}{\lambda } = 208{R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Substitute 4 for Z, 4 for \[{n_1}\] and \[\infty \] for \[{n_2}\] in the above equation.
\[\dfrac{1}{\lambda } = 208{R_H}{\left( 4 \right)^2}\left( {\dfrac{1}{{{4^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{\lambda } = 208{R_H}\]
We have given that the wave-number for electrons is \[\alpha {R_H}\]. Since the given meson also follows Bohr’s model, we can write,
\[\alpha {R_H} = 208{R_H}\]
\[ \Rightarrow \alpha = 208\]
Therefore,
\[\dfrac{\alpha }{{26}} = \dfrac{{208}}{{26}} = 8\]
Therefore, the value of \[\dfrac{\alpha }{{26}}\] is 8.
Note:Rydberg constant \[{R_H}\] consists of all the constants including mass of the electron m, charge e, speed of light c and Planck’s constant h. therefore, do not consider any other constants other than Z in the above formula. The mass-energy relation implies the energy possessed by the rest particle.
Formula used:
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
Complete step by step answer:When an electron jumps from higher orbit \[{n_2}\] to lower orbit \[{n_1}\], the difference in the energy of the orbit is given by Bohr’s atomic model as,
\[\Delta E = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\] …… (1)
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
We know that the difference in the energy is given as,
\[\Delta E = \dfrac{{hc}}{\lambda }\]
Therefore, the energy difference is inversely proportional to the wavelength of the electron. Therefore, the equation (1) is written as,
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
The term \[\dfrac{1}{\lambda }\] is known as wave number.
According to the mass-energy relation, the difference in the energy is,
\[\Delta E = m{c^2}\]
Here, m is the mass of the particle and c is the speed of light.
We have given that the mass is 208 times the mass of the electron. Therefore, the energy difference will also be 208 times that of the electron. Therefore, we can write,
\[\dfrac{1}{\lambda } = 208{R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Substitute 4 for Z, 4 for \[{n_1}\] and \[\infty \] for \[{n_2}\] in the above equation.
\[\dfrac{1}{\lambda } = 208{R_H}{\left( 4 \right)^2}\left( {\dfrac{1}{{{4^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{\lambda } = 208{R_H}\]
We have given that the wave-number for electrons is \[\alpha {R_H}\]. Since the given meson also follows Bohr’s model, we can write,
\[\alpha {R_H} = 208{R_H}\]
\[ \Rightarrow \alpha = 208\]
Therefore,
\[\dfrac{\alpha }{{26}} = \dfrac{{208}}{{26}} = 8\]
Therefore, the value of \[\dfrac{\alpha }{{26}}\] is 8.
Note:Rydberg constant \[{R_H}\] consists of all the constants including mass of the electron m, charge e, speed of light c and Planck’s constant h. therefore, do not consider any other constants other than Z in the above formula. The mass-energy relation implies the energy possessed by the rest particle.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE