A parachutist is descending vertically and makes angles of elevation of \[{{45}^{\circ }}\] and \[{{60}^{\circ }}\] at two observing points 100 m apart from each other on the left side of himself. Find the maximum height from which he falls and the distance of the point where he falls on the ground from the just observation points.
Answer
Verified
499.2k+ views
Hint: consider the maximum height as AB and draw the angle of elevations at two different points and apply \[\tan \theta \]to the two right angled triangles and we will get two equations and then we have to compute the maximum height from which he falls.
Complete step-by-step answer:
Given, the angle of elevations are \[{{45}^{\circ }}\]and\[{{60}^{\circ }}\]at two observing points 100m apart from each other on the left side of himself.
Let the maximum height be AB and BD be x.
In the right angled triangle ABC
\[\tan {{45}^{\circ }}=\dfrac{h}{x+100}\]. . . . . . . . . . . . . . . . . . . (1)
\[h=x+100\]. . . . . . . . . . . . . . . . . . . . . . . . (2)
In the right angled triangle ABD
\[\tan {{60}^{\circ }}=\dfrac{h}{x}\]. . . . . . . . . . . . . . . . . . . . . . (3)
\[x=\dfrac{h}{\sqrt{3}}\]. . . . . . . . . . . . . . . . . . . . . . . . . (4)
Substitute \[x=\dfrac{h}{\sqrt{3}}\]in equation (2)
\[h=\dfrac{h}{\sqrt{3}}+100\]
\[h\left( 1-\dfrac{1}{\sqrt{3}} \right)=100\]
\[0.423h=100\]
\[h=236.4m\]
So, the maximum height from which he falls is AB=\[h=236.4m\]
Note: The angle of elevation is the angle between the horizontal line from the observer and the line of sight to an object that is above the horizontal line. As the person moves from one point to another angle of elevation varies. If we move closer to the object the angle of elevation increases and vice versa.
Complete step-by-step answer:
Given, the angle of elevations are \[{{45}^{\circ }}\]and\[{{60}^{\circ }}\]at two observing points 100m apart from each other on the left side of himself.
Let the maximum height be AB and BD be x.
In the right angled triangle ABC
\[\tan {{45}^{\circ }}=\dfrac{h}{x+100}\]. . . . . . . . . . . . . . . . . . . (1)
\[h=x+100\]. . . . . . . . . . . . . . . . . . . . . . . . (2)
In the right angled triangle ABD
\[\tan {{60}^{\circ }}=\dfrac{h}{x}\]. . . . . . . . . . . . . . . . . . . . . . (3)
\[x=\dfrac{h}{\sqrt{3}}\]. . . . . . . . . . . . . . . . . . . . . . . . . (4)
Substitute \[x=\dfrac{h}{\sqrt{3}}\]in equation (2)
\[h=\dfrac{h}{\sqrt{3}}+100\]
\[h\left( 1-\dfrac{1}{\sqrt{3}} \right)=100\]
\[0.423h=100\]
\[h=236.4m\]
So, the maximum height from which he falls is AB=\[h=236.4m\]
Note: The angle of elevation is the angle between the horizontal line from the observer and the line of sight to an object that is above the horizontal line. As the person moves from one point to another angle of elevation varies. If we move closer to the object the angle of elevation increases and vice versa.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE