Answer
Verified
431.7k+ views
Hint: The charge of a disconnected capacitor remains the same before and after the dielectric has been placed. The voltage drops during after the dielectric has been placed.
Formula used: In this solution we will be using the following formulae;
\[Q = CV\]where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Complete Step-by-Step solution:
To solve, we note that the charge before and after the dielectric has been placed are the same, since the capacitor was disconnected before it was done.
Generally,
\[Q = CV\] where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
Capacitance is
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
The initial capacitance is
\[{C_0} = \dfrac{{\varepsilon A}}{d}\] (since \[K = 1\] for air)
Hence, charge is,
\[Q = \dfrac{{\varepsilon A}}{d}V\]
The final capacitance
\[C = \dfrac{{K\varepsilon A}}{d}\]
Hence, charge is also
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f}\]
Hence, by equating, we have
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f} = \dfrac{{\varepsilon A}}{d}V\]
Then, by simplification, we have
\[{V_f} = \dfrac{V}{K}\].
Now the potential energy is given as
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
Hence, the initial and final energy are respectively
\[{U_i} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\]
\[{U_f} = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)V_f^2 = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{{{K^2}}} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K}\]
The work done is
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Hence,
\[W = - \left[ {\dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K} - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}} \right]\]
\[ \Rightarrow W = - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\left[ {\dfrac{1}{K} - 1} \right]\]
By rearranging, we have
\[W = \dfrac{{\varepsilon A}}{{2d}}{V^2}\left[ {1 - \dfrac{1}{K}} \right]\]
Hence, the correct option is A
Note: Alternatively, without lengthy calculations and using some reasoning, we can get the answer. We can reason as follows: first work done is a difference between different energy states, hence the answer cannot be C or D, also, energy is \[\dfrac{1}{2}C{V^2}\], hence, the answer cannot be B either. Hence, the answer is A.
Formula used: In this solution we will be using the following formulae;
\[Q = CV\]where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Complete Step-by-Step solution:
To solve, we note that the charge before and after the dielectric has been placed are the same, since the capacitor was disconnected before it was done.
Generally,
\[Q = CV\] where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
Capacitance is
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
The initial capacitance is
\[{C_0} = \dfrac{{\varepsilon A}}{d}\] (since \[K = 1\] for air)
Hence, charge is,
\[Q = \dfrac{{\varepsilon A}}{d}V\]
The final capacitance
\[C = \dfrac{{K\varepsilon A}}{d}\]
Hence, charge is also
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f}\]
Hence, by equating, we have
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f} = \dfrac{{\varepsilon A}}{d}V\]
Then, by simplification, we have
\[{V_f} = \dfrac{V}{K}\].
Now the potential energy is given as
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
Hence, the initial and final energy are respectively
\[{U_i} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\]
\[{U_f} = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)V_f^2 = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{{{K^2}}} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K}\]
The work done is
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Hence,
\[W = - \left[ {\dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K} - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}} \right]\]
\[ \Rightarrow W = - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\left[ {\dfrac{1}{K} - 1} \right]\]
By rearranging, we have
\[W = \dfrac{{\varepsilon A}}{{2d}}{V^2}\left[ {1 - \dfrac{1}{K}} \right]\]
Hence, the correct option is A
Note: Alternatively, without lengthy calculations and using some reasoning, we can get the answer. We can reason as follows: first work done is a difference between different energy states, hence the answer cannot be C or D, also, energy is \[\dfrac{1}{2}C{V^2}\], hence, the answer cannot be B either. Hence, the answer is A.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE