Answer
Verified
431.7k+ views
Hint The capacitance of a capacitor is directly proportional to the dielectric constant and inversely proportional to the distance between the plates. Compare the two capacitances to each other by division.
Formula used: In this solution we will be using the following formulae;
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[C\] is the capacitance of a capacitor, \[K\] is the dielectric constant of the material between the capacitor plates, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
Complete Step-by-Step solution:
According to the question, the first air is between the plates, hence, the dielectric constant is 1. Generally, the capacitance of a capacitor is given by
\[C = \dfrac{{K\varepsilon A}}{d}\] where\[K\] is the dielectric constant of the material between the capacitor plates, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
Hence, initially,
\[C = \dfrac{{\varepsilon A}}{d} = 8 \times {10^{ - 12}}\]
Then, capacitance after a dielectric material is added, and the distance between the plate is halved will be given as
\[{C_2} = \dfrac{{2K\varepsilon A}}{d}\]
Then, we compare the two capacitances by dividing, we have
\[\dfrac{{{C_2}}}{C} = \dfrac{{2K\varepsilon A}}{d} \div \dfrac{{\varepsilon A}}{d}\]
\[ \Rightarrow \dfrac{{{C_2}}}{C} = \dfrac{{2K\varepsilon A}}{d} \times \dfrac{d}{{\varepsilon A}}\]
Which by cancellation will give the expression
\[\dfrac{{{C_2}}}{C} = 2K\]
\[ \Rightarrow {C_2} = 2KC\]
By inserting all known values, we have
\[{C_2} = 2 \times 6 \times 8 \times {10^{ - 12}} = 9.6 \times {10^{ - 11}}F\]
Note: Noting that in the final expression the area, and permittivity of free space where absent, this implies that we can find the expression without their knowledge. Hence, alternatively, from the knowledge that the capacitance is proportional to dielectric constant but inversely to distance, we can just write that generally,
\[C = k\dfrac{K}{d}\] where \[k\] is an arbitrary constant. Hence,
\[\dfrac{{{C_2}}}{C} = k\dfrac{K}{{\dfrac{d}{2}}} \div k\dfrac{1}{d} = k\dfrac{{2K}}{d} \times \dfrac{d}{k}\]
\[ \Rightarrow {C_2} = 2KC\]
Formula used: In this solution we will be using the following formulae;
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[C\] is the capacitance of a capacitor, \[K\] is the dielectric constant of the material between the capacitor plates, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
Complete Step-by-Step solution:
According to the question, the first air is between the plates, hence, the dielectric constant is 1. Generally, the capacitance of a capacitor is given by
\[C = \dfrac{{K\varepsilon A}}{d}\] where\[K\] is the dielectric constant of the material between the capacitor plates, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
Hence, initially,
\[C = \dfrac{{\varepsilon A}}{d} = 8 \times {10^{ - 12}}\]
Then, capacitance after a dielectric material is added, and the distance between the plate is halved will be given as
\[{C_2} = \dfrac{{2K\varepsilon A}}{d}\]
Then, we compare the two capacitances by dividing, we have
\[\dfrac{{{C_2}}}{C} = \dfrac{{2K\varepsilon A}}{d} \div \dfrac{{\varepsilon A}}{d}\]
\[ \Rightarrow \dfrac{{{C_2}}}{C} = \dfrac{{2K\varepsilon A}}{d} \times \dfrac{d}{{\varepsilon A}}\]
Which by cancellation will give the expression
\[\dfrac{{{C_2}}}{C} = 2K\]
\[ \Rightarrow {C_2} = 2KC\]
By inserting all known values, we have
\[{C_2} = 2 \times 6 \times 8 \times {10^{ - 12}} = 9.6 \times {10^{ - 11}}F\]
Note: Noting that in the final expression the area, and permittivity of free space where absent, this implies that we can find the expression without their knowledge. Hence, alternatively, from the knowledge that the capacitance is proportional to dielectric constant but inversely to distance, we can just write that generally,
\[C = k\dfrac{K}{d}\] where \[k\] is an arbitrary constant. Hence,
\[\dfrac{{{C_2}}}{C} = k\dfrac{K}{{\dfrac{d}{2}}} \div k\dfrac{1}{d} = k\dfrac{{2K}}{d} \times \dfrac{d}{k}\]
\[ \Rightarrow {C_2} = 2KC\]
Watch videos on
A parallel plate capacitor with air between the plates has a capacitance of \[8\mu F\] (\[1\mu F \times {10^{ - 12}}\]). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6?
Electrostatic Potential and Capacitance Class 12 Physics - NCERT EXERCISE 2.5 | Vishal Kumar Sir
Subscribe
Share
likes
125 Views
1 year ago
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE