
A particle acted on by constant forces $3i + j - k$ and $4i + j - 3k$ is displaced from the point $i + 2j + 3k$ to $5i + 4j + k$ . Find the total work done by the forces.
$
\left( a \right)22{\text{ units}} \\
\left( b \right)23{\text{ units}} \\
\left( c \right)24{\text{ units}} \\
\left( d \right)25{\text{ units}} \\
$
Answer
619.8k+ views
Hint: In this question, we use the formula of work done by the force. when a force is applied to an object, causing displacement. When the force is represented by the vector \[\mathop F\limits^ \to \] and the displacement is represented by the vector \[\mathop S\limits^ \to \] then the work done W is given by the formula \[W = \mathop F\limits^ \to .\mathop S\limits^ \to = \left| F \right|\left| S \right|\cos \theta \].
Complete step-by-step answer:
A particle acted on two constant forces \[\mathop {{F_1}}\limits^ \to = 3i + j - k\] and \[\mathop {{F_2}}\limits^ \to = 4i + j - 3k\] .
So, the net force applied on particle is \[\mathop F\limits^ \to = \mathop {{F_1}}\limits^ \to + \mathop {{F_2}}\limits^ \to \]
$
\Rightarrow \mathop F\limits^ \to = \left( {3i + j - k} \right) + \left( {4i + j - 3k} \right) \\
\Rightarrow \mathop F\limits^ \to = 7i + 2j - 4k \\
$
Now, the particle displaced from the point \[\mathop {{r_1}}\limits^ \to = i + 2j + 3k\] to \[\mathop {{r_2}}\limits^ \to = 5i + 4j + k\]
So, the displacement covered by particle \[\mathop S\limits^ \to = \mathop {{r_2}}\limits^ \to - \mathop {{r_1}}\limits^ \to \]
\[
\Rightarrow \mathop S\limits^ \to = \left( {5i + 4j + k} \right) - \left( {i + 2j + 3k} \right) \\
\Rightarrow \mathop S\limits^ \to = 4i + 2j - 2k \\
\]
Now, we apply formula of work done \[W = \mathop F\limits^ \to .\mathop S\limits^ \to \]
$ \Rightarrow W = \left( {7i + 2j - 4k} \right).\left( {4i + 2j - 2k} \right)$
We know in dot product $i.i = 1,j.j = 1,k.k = 1
i.j=0, i.k=0$
$
\Rightarrow W = 28 + 4 + 8 \\
\Rightarrow W = 40J \\
$
So, the total work done by the forces is 40 Joules.
Note: Whenever we face such types of problems we use some important points. First we find the net force acted on the particle and also the displacement covered by the particle then apply the formula of work done. So, after using dot product we will get the required answer.
Complete step-by-step answer:
A particle acted on two constant forces \[\mathop {{F_1}}\limits^ \to = 3i + j - k\] and \[\mathop {{F_2}}\limits^ \to = 4i + j - 3k\] .
So, the net force applied on particle is \[\mathop F\limits^ \to = \mathop {{F_1}}\limits^ \to + \mathop {{F_2}}\limits^ \to \]
$
\Rightarrow \mathop F\limits^ \to = \left( {3i + j - k} \right) + \left( {4i + j - 3k} \right) \\
\Rightarrow \mathop F\limits^ \to = 7i + 2j - 4k \\
$
Now, the particle displaced from the point \[\mathop {{r_1}}\limits^ \to = i + 2j + 3k\] to \[\mathop {{r_2}}\limits^ \to = 5i + 4j + k\]
So, the displacement covered by particle \[\mathop S\limits^ \to = \mathop {{r_2}}\limits^ \to - \mathop {{r_1}}\limits^ \to \]
\[
\Rightarrow \mathop S\limits^ \to = \left( {5i + 4j + k} \right) - \left( {i + 2j + 3k} \right) \\
\Rightarrow \mathop S\limits^ \to = 4i + 2j - 2k \\
\]
Now, we apply formula of work done \[W = \mathop F\limits^ \to .\mathop S\limits^ \to \]
$ \Rightarrow W = \left( {7i + 2j - 4k} \right).\left( {4i + 2j - 2k} \right)$
We know in dot product $i.i = 1,j.j = 1,k.k = 1
i.j=0, i.k=0$
$
\Rightarrow W = 28 + 4 + 8 \\
\Rightarrow W = 40J \\
$
So, the total work done by the forces is 40 Joules.
Note: Whenever we face such types of problems we use some important points. First we find the net force acted on the particle and also the displacement covered by the particle then apply the formula of work done. So, after using dot product we will get the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

