
A particle executes SHM with time period T and amplitude A. The maximum possible average velocity in time $\dfrac{{\text{T}}}{{\text{4}}}$ is:
A. $\dfrac{{{\text{2A}}}}{{\text{T}}}$
B. $\dfrac{{{\text{4A}}}}{{\text{T}}}$
C. $\dfrac{{{\text{6A}}}}{{\text{T}}}$
D. $\dfrac{{{\text{4}}\sqrt 2 {\text{A}}}}{{\text{T}}}$
Answer
608.4k+ views
Hint: To solve this question, we need to use the basic theory of simple harmonic motion (SHM). First suppose, SHM is represented by x=A sin wt and then we directly use some basic formula so that we will get the answer.
Formula used- The maximum possible average velocity = $\dfrac{{{\text{maximum displacement}}}}{{{\text{time}}}}$
Complete Step-by-Step solution:
As we know, in mechanics and physics, simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to, and opposite of, the object's displacement vector.
Now, in this case
We have, time = $\dfrac{{\text{T}}}{{\text{4}}}$
The maximum possible average velocity = $\dfrac{{{\text{maximum displacement}}}}{{{\text{time}}}}$
That means, ${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{{\text{d}}_{{\text{max}}}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{\text{4}}{{\text{d}}_{{\text{max}}}}}}{{\text{T}}}$
here T→2π
$\dfrac{{\text{T}}}{{\text{4}}}$$ \to $$\dfrac{{{\pi }}}{{\text{2}}}$
∴θ = $\dfrac{{{\pi }}}{{\text{4}}}$
∴ ${{\text{d}}_{{\text{max}}}}$=PQ=2Asinθ
= 2a ${\text{sin}}\left( {\dfrac{{{\pi }}}{{\text{4}}}} \right)$
∴ ${{\text{d}}_{{\text{max}}}}$= $\dfrac{{{\text{2A}}}}{{\sqrt {\text{2}} }}$ = $\sqrt {\text{2}} {\text{A}}$
Now, as we know:
${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{{\text{d}}_{{\text{max}}}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
= $\dfrac{{\sqrt {\text{2}} {\text{A}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
= $\dfrac{{{\text{4}}\sqrt {\text{2}} {\text{A}}}}{{\text{T}}}$
Therefore, a particle executes SHM with time period T and amplitude A. The maximum possible average velocity in time $\dfrac{{\text{T}}}{{\text{4}}}$ is $\dfrac{{{\text{4}}\sqrt {\text{2}} {\text{A}}}}{{\text{T}}}$.
So, option (D) is the correct answer.
Note- An oscillation follows simple harmonic motion if it fulfils the following two rules: Acceleration is always in the opposite direction to the displacement from the equilibrium position. Acceleration is proportional to the displacement from the equilibrium position.
Formula used- The maximum possible average velocity = $\dfrac{{{\text{maximum displacement}}}}{{{\text{time}}}}$
Complete Step-by-Step solution:
As we know, in mechanics and physics, simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to, and opposite of, the object's displacement vector.
Now, in this case
We have, time = $\dfrac{{\text{T}}}{{\text{4}}}$
The maximum possible average velocity = $\dfrac{{{\text{maximum displacement}}}}{{{\text{time}}}}$
That means, ${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{{\text{d}}_{{\text{max}}}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{\text{4}}{{\text{d}}_{{\text{max}}}}}}{{\text{T}}}$
here T→2π
$\dfrac{{\text{T}}}{{\text{4}}}$$ \to $$\dfrac{{{\pi }}}{{\text{2}}}$
∴θ = $\dfrac{{{\pi }}}{{\text{4}}}$
∴ ${{\text{d}}_{{\text{max}}}}$=PQ=2Asinθ
= 2a ${\text{sin}}\left( {\dfrac{{{\pi }}}{{\text{4}}}} \right)$
∴ ${{\text{d}}_{{\text{max}}}}$= $\dfrac{{{\text{2A}}}}{{\sqrt {\text{2}} }}$ = $\sqrt {\text{2}} {\text{A}}$
Now, as we know:
${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{{\text{d}}_{{\text{max}}}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
= $\dfrac{{\sqrt {\text{2}} {\text{A}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
= $\dfrac{{{\text{4}}\sqrt {\text{2}} {\text{A}}}}{{\text{T}}}$
Therefore, a particle executes SHM with time period T and amplitude A. The maximum possible average velocity in time $\dfrac{{\text{T}}}{{\text{4}}}$ is $\dfrac{{{\text{4}}\sqrt {\text{2}} {\text{A}}}}{{\text{T}}}$.
So, option (D) is the correct answer.
Note- An oscillation follows simple harmonic motion if it fulfils the following two rules: Acceleration is always in the opposite direction to the displacement from the equilibrium position. Acceleration is proportional to the displacement from the equilibrium position.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

