Answer
Verified
460.5k+ views
Hint:
To calculate the answer -
- We have to use $S = ut + \dfrac{1}{2}g{t^2}$.
- First we have to calculate the value of $x$ using the equation. Then using that value of$x$, we can calculate the time taken to cover the $2x$ distance.
Complete step by step solution:
If the particle falls with an initial velocity $u$ and acceleration $g$. And, after time t, it travels a distance $s$.
Then, this equation can be used,
$S = ut + \dfrac{1}{2}a{t^2}$ - (equation 1)
We will solve this problem in two parts.
First, the particle falling from rest under gravity covers a distance $x$ in $4s$.
So, here
$
s = x \\
g = 9.8 \\
u = 0 \\
t = 4 \\
$
Putting this value on equation 1,
$
x = 0 \times 4 + \dfrac{1}{2} \times 9.8 \times {4^2} \\
\Rightarrow x = \dfrac{1}{2} \times 9.8 \times 16 \\
\Rightarrow x = 78.4unit \\
$
Second, we will calculate the time taken by the particle to cover $2x$ distance. After covering $x$distance, the particle covers \[2x\].
So, here
$
s = 3x \\
g = 9.8 \\
u = 0 \\
t = ? \\
$
By putting this values on equation 1,
$
3x = 0 \times t + \dfrac{1}{2} \times 9.8 \times {t^2} \\
\Rightarrow 3 \times 78.4 = \dfrac{1}{2} \times 9.8 \times {t^2} \\
\Rightarrow 235.2 = 4.9 \times {t^2} \\
\Rightarrow {t^2} = \dfrac{{235.5}}{{4.9}} \\
\Rightarrow t = \sqrt {\dfrac{{235.5}}{{4.9}}} \\
\Rightarrow t = \sqrt {48.06} \\
\Rightarrow t = 6.93s \\
$
Now, to cover $3x$ distance it takes $6.93$. By subtracting the times covered by the particle from this time, we will get the time taken by the particle for the next $2x$ distance.
So, the next \[2x\] distance will be covered in approximately = 6.93 – 4.0 = 2.93s.
The Correct option is D. $2.93s$
Note: We should use the equation of motion to solve this kind of problem.
To calculate the answer -
- We have to use $S = ut + \dfrac{1}{2}g{t^2}$.
- First we have to calculate the value of $x$ using the equation. Then using that value of$x$, we can calculate the time taken to cover the $2x$ distance.
Complete step by step solution:
If the particle falls with an initial velocity $u$ and acceleration $g$. And, after time t, it travels a distance $s$.
Then, this equation can be used,
$S = ut + \dfrac{1}{2}a{t^2}$ - (equation 1)
We will solve this problem in two parts.
First, the particle falling from rest under gravity covers a distance $x$ in $4s$.
So, here
$
s = x \\
g = 9.8 \\
u = 0 \\
t = 4 \\
$
Putting this value on equation 1,
$
x = 0 \times 4 + \dfrac{1}{2} \times 9.8 \times {4^2} \\
\Rightarrow x = \dfrac{1}{2} \times 9.8 \times 16 \\
\Rightarrow x = 78.4unit \\
$
Second, we will calculate the time taken by the particle to cover $2x$ distance. After covering $x$distance, the particle covers \[2x\].
So, here
$
s = 3x \\
g = 9.8 \\
u = 0 \\
t = ? \\
$
By putting this values on equation 1,
$
3x = 0 \times t + \dfrac{1}{2} \times 9.8 \times {t^2} \\
\Rightarrow 3 \times 78.4 = \dfrac{1}{2} \times 9.8 \times {t^2} \\
\Rightarrow 235.2 = 4.9 \times {t^2} \\
\Rightarrow {t^2} = \dfrac{{235.5}}{{4.9}} \\
\Rightarrow t = \sqrt {\dfrac{{235.5}}{{4.9}}} \\
\Rightarrow t = \sqrt {48.06} \\
\Rightarrow t = 6.93s \\
$
Now, to cover $3x$ distance it takes $6.93$. By subtracting the times covered by the particle from this time, we will get the time taken by the particle for the next $2x$ distance.
So, the next \[2x\] distance will be covered in approximately = 6.93 – 4.0 = 2.93s.
The Correct option is D. $2.93s$
Note: We should use the equation of motion to solve this kind of problem.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE