Answer
Verified
460.8k+ views
Hint:The charge particle will have force due to the electric field and due to the magnetic field. The particle will move in the direction resultant to the force exerted by the force on the particle due to electric and magnetic fields.
Formula used:The formula of the force due to magnetic field is given ${\vec F_m} = q \cdot \left( {\vec v \times \vec B} \right)$ where q is the charged particle v is the velocity and B is the magnetic field. The force due to the electric field on the charged particle is given by ${\vec F_e} = q \cdot \vec E$ where q is the charged particle and E is the electric field.
Step by step solution:
The total force on the charged particle is given by
$ \Rightarrow \vec F = {\vec F_m} + {\vec F_e}$
The force F is the total force and ${F_m}$ is the force due to the magnetic field and ${F_e}$ is the force due to the electric field.
$ \Rightarrow \vec F = q \cdot \left( {\vec v \times \vec B} \right) + q \cdot \vec E$
$ \Rightarrow \vec F = q \cdot \left[ {\left( {\vec v \times \vec B} \right) + \vec E} \right]$.........eq. (1)
Let the initial velocity is given by,
$u = {u_x}\hat i + {u_y}\hat j + {u_z}\hat k$.
Replacing the value of the velocity in the equation (1)
$ \Rightarrow \vec F = q \cdot \left[ {\left( {\vec v \times \vec B} \right) + \vec E} \right]$
$ \Rightarrow \vec F = q \cdot \left[ {\left( {{u_x}\hat i + {u_y}\hat j + {u_z}\hat k} \right) \times \left( { - {B_o}\hat j} \right) + {E_o}\hat k} \right]$
Applying cross product.
$ \Rightarrow \vec F = q \cdot \left[ {\left( { - {u_x}{B_o}\hat k + {u_z}{B_o}\hat i} \right) + {E_o}\hat k} \right]$
Since the velocity in the x-direction is zero as the particle is released at origin. Therefore the force in the z-direction will be.
$ \Rightarrow {\vec F_z} = q \cdot \left( {{E_o}\hat k} \right)$
Since force is given by $F = ma$ ,the acceleration will be equal to.
$ \Rightarrow a = \dfrac{F}{m}$
$ \Rightarrow {a_z} = \dfrac{{q{E_o}}}{m}$………eq. (1)
According to the Newton’s law of motion,
$ \Rightarrow {v^2} - {u^2} = 2as$
Replace the value of${a_z}$ we get
$ \Rightarrow {v^2} = 2\left( {\dfrac{{q{E_o}}}{m}} \right)z$
$ \Rightarrow v = \sqrt {2\left( {\dfrac{{q{E_o}}}{m}} \right)z} $.
The velocity of the charged particle in the z-direction is given by$v = \sqrt {2\left( {\dfrac{{q{E_o}}}{m}} \right)z} $.
The correct option for this problem is option D
Note:The acceleration in the z-direction is asked in the problem. The acceleration is constant because of which we are able to apply Newton's law of motion equations, if the acceleration is not constant we cannot apply the equations of Newton's law.
Formula used:The formula of the force due to magnetic field is given ${\vec F_m} = q \cdot \left( {\vec v \times \vec B} \right)$ where q is the charged particle v is the velocity and B is the magnetic field. The force due to the electric field on the charged particle is given by ${\vec F_e} = q \cdot \vec E$ where q is the charged particle and E is the electric field.
Step by step solution:
The total force on the charged particle is given by
$ \Rightarrow \vec F = {\vec F_m} + {\vec F_e}$
The force F is the total force and ${F_m}$ is the force due to the magnetic field and ${F_e}$ is the force due to the electric field.
$ \Rightarrow \vec F = q \cdot \left( {\vec v \times \vec B} \right) + q \cdot \vec E$
$ \Rightarrow \vec F = q \cdot \left[ {\left( {\vec v \times \vec B} \right) + \vec E} \right]$.........eq. (1)
Let the initial velocity is given by,
$u = {u_x}\hat i + {u_y}\hat j + {u_z}\hat k$.
Replacing the value of the velocity in the equation (1)
$ \Rightarrow \vec F = q \cdot \left[ {\left( {\vec v \times \vec B} \right) + \vec E} \right]$
$ \Rightarrow \vec F = q \cdot \left[ {\left( {{u_x}\hat i + {u_y}\hat j + {u_z}\hat k} \right) \times \left( { - {B_o}\hat j} \right) + {E_o}\hat k} \right]$
Applying cross product.
$ \Rightarrow \vec F = q \cdot \left[ {\left( { - {u_x}{B_o}\hat k + {u_z}{B_o}\hat i} \right) + {E_o}\hat k} \right]$
Since the velocity in the x-direction is zero as the particle is released at origin. Therefore the force in the z-direction will be.
$ \Rightarrow {\vec F_z} = q \cdot \left( {{E_o}\hat k} \right)$
Since force is given by $F = ma$ ,the acceleration will be equal to.
$ \Rightarrow a = \dfrac{F}{m}$
$ \Rightarrow {a_z} = \dfrac{{q{E_o}}}{m}$………eq. (1)
According to the Newton’s law of motion,
$ \Rightarrow {v^2} - {u^2} = 2as$
Replace the value of${a_z}$ we get
$ \Rightarrow {v^2} = 2\left( {\dfrac{{q{E_o}}}{m}} \right)z$
$ \Rightarrow v = \sqrt {2\left( {\dfrac{{q{E_o}}}{m}} \right)z} $.
The velocity of the charged particle in the z-direction is given by$v = \sqrt {2\left( {\dfrac{{q{E_o}}}{m}} \right)z} $.
The correct option for this problem is option D
Note:The acceleration in the z-direction is asked in the problem. The acceleration is constant because of which we are able to apply Newton's law of motion equations, if the acceleration is not constant we cannot apply the equations of Newton's law.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE