Answer
Verified
460.8k+ views
Hint: First consider the general equation of $\overrightarrow{v}$ and compare it with the given equation of $\overrightarrow{v}$. Then we will get a value for the x and y component of $\overrightarrow{v}$. Then differentiating the x and y component of $\overrightarrow{v}$ with respect to time t. Then we get two equations. And by dividing them we will get $\dfrac{dy}{dx}$. Then by using a variable separable method and integrating we will get the final answer.
Complete answer:
Given that,
$\overrightarrow{v}=K(y\overrightarrow{i}+x\overrightarrow{j})$
$\overrightarrow{v}=Ky\overrightarrow{i}+Kx\overrightarrow{j}$ ………….(1)
Consider the general equation of $\overrightarrow{v}$,
$v={{v}_{x}}\overrightarrow{i}+{{v}_{_{y}}}\overrightarrow{j}$ ………….(2)
Comparing equation (1) and (2),
We will get like this,
${{v}_{x}}=Ky$
and
${{v}_{y}}=Kx$
Then by differentiating the x and y component of v we get,
$\dfrac{dx}{dt}=Ky$ ………….(3)
$\dfrac{dy}{dt}=Kx$ …………(4)
Now by dividing equation(4) by (3),
$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{x}{y}$
Then by using variable separable method and rearranging we get,
$ydy=xdx$
Integrating on both sides we get,
$\int{ydy=\int{xdx}}$
We know that in general,
$\int{xdx=\dfrac{{{x}^{2}}}{2}}$
By using this concept it becomes,
$\dfrac{{{y}^{2}}}{2}=\dfrac{{{x}^{2}}}{2}+c$ ………………..(5)
Then multiplying equation (5) by 2 we get,
${{y}^{2}}={{x}^{2}}+2c$
where 2c is the constant of integration.
Then it becomes,
${{y}^{2}}={{x}^{2}}+$ constant.
This is the general equation for its path.
Hence, option(D) is correct.
Note:
The general equation for $\overrightarrow{v}$ is ${{v}_{x}}\overrightarrow{i}+{{v}_{y}}\overrightarrow{j}$ and compare it with the given equation of $\overrightarrow{v}$. Then we will get a value for the x and y component of $\overrightarrow{v}$. While using Variable separation method for integration, always bring x components to one side and y components to the other side. The name itself shows that. Thus we get the general equation of path .
Complete answer:
Given that,
$\overrightarrow{v}=K(y\overrightarrow{i}+x\overrightarrow{j})$
$\overrightarrow{v}=Ky\overrightarrow{i}+Kx\overrightarrow{j}$ ………….(1)
Consider the general equation of $\overrightarrow{v}$,
$v={{v}_{x}}\overrightarrow{i}+{{v}_{_{y}}}\overrightarrow{j}$ ………….(2)
Comparing equation (1) and (2),
We will get like this,
${{v}_{x}}=Ky$
and
${{v}_{y}}=Kx$
Then by differentiating the x and y component of v we get,
$\dfrac{dx}{dt}=Ky$ ………….(3)
$\dfrac{dy}{dt}=Kx$ …………(4)
Now by dividing equation(4) by (3),
$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{x}{y}$
Then by using variable separable method and rearranging we get,
$ydy=xdx$
Integrating on both sides we get,
$\int{ydy=\int{xdx}}$
We know that in general,
$\int{xdx=\dfrac{{{x}^{2}}}{2}}$
By using this concept it becomes,
$\dfrac{{{y}^{2}}}{2}=\dfrac{{{x}^{2}}}{2}+c$ ………………..(5)
Then multiplying equation (5) by 2 we get,
${{y}^{2}}={{x}^{2}}+2c$
where 2c is the constant of integration.
Then it becomes,
${{y}^{2}}={{x}^{2}}+$ constant.
This is the general equation for its path.
Hence, option(D) is correct.
Note:
The general equation for $\overrightarrow{v}$ is ${{v}_{x}}\overrightarrow{i}+{{v}_{y}}\overrightarrow{j}$ and compare it with the given equation of $\overrightarrow{v}$. Then we will get a value for the x and y component of $\overrightarrow{v}$. While using Variable separation method for integration, always bring x components to one side and y components to the other side. The name itself shows that. Thus we get the general equation of path .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE