Answer
Verified
469.2k+ views
Hint: velocity can be defined as the rate of displacement. And the acceleration is the rate of velocity. If the velocity changes by time, it is called acceleration.
Formula used:
(i) \[V = \dfrac{{2\pi r}}{t}\]
(ii) \[a = \dfrac{{{V^2}}}{r}\]
Where,
\[V\]=velocity
\[r\]=radius
\[t\]=time period
\[a\]=acceleration
Complete step by step answer:
To know the acceleration, we have to know what the velocity is. Therefore to find the velocity we use the formula
\[V = \dfrac{{2\pi r}}{t}\]
From the question, we have radius, \[r = 5cm\]. We can convert the centimetres into meters we get \[r\]\[ = 5 \times {10^{ - 2}}m\] and the time period, \[t = 0.2\pi s\]. Apply these values in the above velocity formula.
\[V = \dfrac{{2 \times 3.14 \times 5 \times {{10}^{ - 2}}}}{{0.2 \times 3.14}}\]
Now let us cancel the common terms, then we have
\[V = \dfrac{{5 \times {{10}^{ - 2}}}}{{0.1}}\]
\[ \Rightarrow 5 \times {10^{ - 2 + 1}}\]
\[V = 0.5m{s^{ - 1}}\]
Now we are going to apply the value of velocity in the acceleration formula. As the particle is moving in the circle, it experiences centripetal force. The acceleration is given as the velocity divided by the distance. Hence the acceleration is given as,
\[a = \dfrac{{{V^2}}}{r}\]
Apply the known values in the formula,
\[a = \dfrac{{{{\left( {0.5} \right)}^2}}}{{5 \times {{10}^{ - 2}}}}\]
\[ \Rightarrow \dfrac{{0.25}}{{0.05}}\]
\[ \Rightarrow 5\]
Hence, the acceleration \[a = 5m{s^{ - 2}}\]
Therefore the correct option is option C.
Additional information:
(i) Velocity is the speed taken by a particle to reach a specific distance in a specific time. Its unit is \[m{s^{ - 1}}\]. Acceleration is the change of velocities while reaching the specific distance in the specific time. Its unit is \[m{s^{ - 2}}\]
(ii)The dimension of velocity is \[L{T^{ - 1}}\]. And the dimensional formula for acceleration is \[L{T^{ - 2}}\].
(iii)Velocity and acceleration are the vector quantities. Which means the value denotes both magnitude and direction.
Note:
While calculating the acceleration and velocity, it is very important to know about the path it travels like the shape of the path.
Formula used:
(i) \[V = \dfrac{{2\pi r}}{t}\]
(ii) \[a = \dfrac{{{V^2}}}{r}\]
Where,
\[V\]=velocity
\[r\]=radius
\[t\]=time period
\[a\]=acceleration
Complete step by step answer:
To know the acceleration, we have to know what the velocity is. Therefore to find the velocity we use the formula
\[V = \dfrac{{2\pi r}}{t}\]
From the question, we have radius, \[r = 5cm\]. We can convert the centimetres into meters we get \[r\]\[ = 5 \times {10^{ - 2}}m\] and the time period, \[t = 0.2\pi s\]. Apply these values in the above velocity formula.
\[V = \dfrac{{2 \times 3.14 \times 5 \times {{10}^{ - 2}}}}{{0.2 \times 3.14}}\]
Now let us cancel the common terms, then we have
\[V = \dfrac{{5 \times {{10}^{ - 2}}}}{{0.1}}\]
\[ \Rightarrow 5 \times {10^{ - 2 + 1}}\]
\[V = 0.5m{s^{ - 1}}\]
Now we are going to apply the value of velocity in the acceleration formula. As the particle is moving in the circle, it experiences centripetal force. The acceleration is given as the velocity divided by the distance. Hence the acceleration is given as,
\[a = \dfrac{{{V^2}}}{r}\]
Apply the known values in the formula,
\[a = \dfrac{{{{\left( {0.5} \right)}^2}}}{{5 \times {{10}^{ - 2}}}}\]
\[ \Rightarrow \dfrac{{0.25}}{{0.05}}\]
\[ \Rightarrow 5\]
Hence, the acceleration \[a = 5m{s^{ - 2}}\]
Therefore the correct option is option C.
Additional information:
(i) Velocity is the speed taken by a particle to reach a specific distance in a specific time. Its unit is \[m{s^{ - 1}}\]. Acceleration is the change of velocities while reaching the specific distance in the specific time. Its unit is \[m{s^{ - 2}}\]
(ii)The dimension of velocity is \[L{T^{ - 1}}\]. And the dimensional formula for acceleration is \[L{T^{ - 2}}\].
(iii)Velocity and acceleration are the vector quantities. Which means the value denotes both magnitude and direction.
Note:
While calculating the acceleration and velocity, it is very important to know about the path it travels like the shape of the path.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE