
A particle moves with simple harmonic motion along x-axis. At time t and 2t, its positions are given by \[x = a\] and \[x = b\] respectively from equilibrium positions. Find the time period of oscillations.
Answer
483.9k+ views
Hint: Express the displacements of the particle using a wave equation. Rearrange these two equations of displacement and determine the value of angular frequency. Then use the relation between angular frequency and period of the wave.
Formula used:
\[\Rightarrow\omega = \dfrac{{2\pi }}{T}\]
Here, \[\omega \] is the angular frequency and T is the period of the wave.
Complete step by step answer:
The displacement of the particle from the mean position is given by the wave equation,
\[ \Rightarrow x = A\sin \omega t\]
Here, A is the amplitude of the wave, \[\omega \] is the angular frequency and t is the time.
Write the displacements of the wave at time t and 2t as follows,
\[ \Rightarrow a = A\sin \omega t\] …… (1)
\[ \Rightarrow b = A\sin \left( {2\omega t} \right)\] …… (2)
Divide equation (2) by equation (1).
\[ \Rightarrow\dfrac{b}{a} = \dfrac{{\sin \left( {2\omega t} \right)}}{{\sin \omega t}}\]
Use the identity, \[\sin 2\theta = 2\sin \theta \cos \theta \] to rewrite the above equation as follows,
\[ \Rightarrow\dfrac{b}{a} = \dfrac{{2\left( {\sin \omega t} \right)\left( {\cos \omega t} \right)}}{{\sin \omega t}}\]
\[ \Rightarrow \dfrac{b}{a} = 2\cos \omega t\]
Rewrite the above equation for \[\omega t\].
\[ \Rightarrow\omega t = {\cos ^{ - 1}}\left( {\dfrac{b}{{2a}}} \right)\] …… (3)
The angular frequency of the wave is expressed as,
\[ \Rightarrow\omega = \dfrac{{2\pi }}{T}\]
Here, T is the period of the wave.
Therefore, equation (3) becomes,
\[ \Rightarrow\dfrac{{2\pi t}}{T} = {\cos ^{ - 1}}\left( {\dfrac{b}{{2a}}} \right)\]
\[ \Rightarrow T = \dfrac{{2\pi t}}{{{{\cos }^{ - 1}}\left( {\dfrac{b}{{2a}}} \right)}}\]
This is the period of the oscillations of the given wave.
Note: In formula \[\sin 2\theta = 2\sin \theta \cos \theta \], the angle \[\theta \] is considered as \[\omega t\] and not just \[\omega \].
Formula used:
\[\Rightarrow\omega = \dfrac{{2\pi }}{T}\]
Here, \[\omega \] is the angular frequency and T is the period of the wave.
Complete step by step answer:
The displacement of the particle from the mean position is given by the wave equation,
\[ \Rightarrow x = A\sin \omega t\]
Here, A is the amplitude of the wave, \[\omega \] is the angular frequency and t is the time.
Write the displacements of the wave at time t and 2t as follows,
\[ \Rightarrow a = A\sin \omega t\] …… (1)
\[ \Rightarrow b = A\sin \left( {2\omega t} \right)\] …… (2)
Divide equation (2) by equation (1).
\[ \Rightarrow\dfrac{b}{a} = \dfrac{{\sin \left( {2\omega t} \right)}}{{\sin \omega t}}\]
Use the identity, \[\sin 2\theta = 2\sin \theta \cos \theta \] to rewrite the above equation as follows,
\[ \Rightarrow\dfrac{b}{a} = \dfrac{{2\left( {\sin \omega t} \right)\left( {\cos \omega t} \right)}}{{\sin \omega t}}\]
\[ \Rightarrow \dfrac{b}{a} = 2\cos \omega t\]
Rewrite the above equation for \[\omega t\].
\[ \Rightarrow\omega t = {\cos ^{ - 1}}\left( {\dfrac{b}{{2a}}} \right)\] …… (3)
The angular frequency of the wave is expressed as,
\[ \Rightarrow\omega = \dfrac{{2\pi }}{T}\]
Here, T is the period of the wave.
Therefore, equation (3) becomes,
\[ \Rightarrow\dfrac{{2\pi t}}{T} = {\cos ^{ - 1}}\left( {\dfrac{b}{{2a}}} \right)\]
\[ \Rightarrow T = \dfrac{{2\pi t}}{{{{\cos }^{ - 1}}\left( {\dfrac{b}{{2a}}} \right)}}\]
This is the period of the oscillations of the given wave.
Note: In formula \[\sin 2\theta = 2\sin \theta \cos \theta \], the angle \[\theta \] is considered as \[\omega t\] and not just \[\omega \].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
