
A particle of mass $9\,kg$ is moving under the action of a central force whose potential energy is given by $U = \dfrac{{10}}{r}$. For what energy it will orbit a circle of radius $10\,m$? Calculate the time period of this motion.
Answer
419.1k+ views
Hint: The net force which acts on an object to keep it moving in a circular path is called centripetal force. Newton’s first law says that an object will continue moving along a straight line path until an external force acts on it. The external force in this case is the centripetal force.
Complete step by step answer:
Given that:
$U = \dfrac{{10}}{r}$
$\Rightarrow E = \dfrac{{10}}{{10}} = 1\,J$
The centripetal force:
$|{\text{f}}| = \left| {\dfrac{{ - du}}{{dr}}} \right| \\
\Rightarrow |{\text{f}}|= + \dfrac{{10}}{{{r^2}}}$
Now, centripetal force = centrifugal force
$\dfrac{{10}}{{{r^2}}} = \dfrac{{m{v^2}}}{r}$
$\Rightarrow {v^2} = \dfrac{{10}}{{10 \times 9}} \\
\Rightarrow {v^2} = \dfrac{1}{9}$
Adding square root on both sides:
$v = \dfrac{1}{3}\,m/s$
The time period:
$T = \dfrac{{2\pi r}}{v} \\
\Rightarrow T = \dfrac{{2\pi \times 10 \times 3}}{1} \\
\therefore T = 60\pi {\text{ sec}}$
Therefore, the time period of this motion is $60\pi {\text{ sec}}$.
Note: The force which is needed to keep an object moving in a curved path that is directed inward towards the center of rotation is called centripetal force whereas the apparent force that is felt by an object which is moving in a curved path that acts outwardly away from the center is called as centrifugal force. The centrifugal force is equal in both the magnitude and dimensions with the centripetal force.
Complete step by step answer:
Given that:
$U = \dfrac{{10}}{r}$
$\Rightarrow E = \dfrac{{10}}{{10}} = 1\,J$
The centripetal force:
$|{\text{f}}| = \left| {\dfrac{{ - du}}{{dr}}} \right| \\
\Rightarrow |{\text{f}}|= + \dfrac{{10}}{{{r^2}}}$
Now, centripetal force = centrifugal force
$\dfrac{{10}}{{{r^2}}} = \dfrac{{m{v^2}}}{r}$
$\Rightarrow {v^2} = \dfrac{{10}}{{10 \times 9}} \\
\Rightarrow {v^2} = \dfrac{1}{9}$
Adding square root on both sides:
$v = \dfrac{1}{3}\,m/s$
The time period:
$T = \dfrac{{2\pi r}}{v} \\
\Rightarrow T = \dfrac{{2\pi \times 10 \times 3}}{1} \\
\therefore T = 60\pi {\text{ sec}}$
Therefore, the time period of this motion is $60\pi {\text{ sec}}$.
Note: The force which is needed to keep an object moving in a curved path that is directed inward towards the center of rotation is called centripetal force whereas the apparent force that is felt by an object which is moving in a curved path that acts outwardly away from the center is called as centrifugal force. The centrifugal force is equal in both the magnitude and dimensions with the centripetal force.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
