Answer
Verified
482.1k+ views
Hint: Let us first draw the figure of plot and the path. And the find the area of semicircle included path and area of semicircle excluded path (plot only).
Complete step-by-step answer:
As we know that the perimeter of the semicircle is calculated as \[\pi r\] + diameter = \[\pi r + 2r\]. Where r is the radius of semicircle.
So, let the radius of the grassy plot be r metres.
And it is given that the perimeter of the grassy plot is 72m.
\[
\pi r + 2r = 72 \\
r\left( {\pi + 2} \right) = 72 \\
r\left( {\dfrac{{22}}{7} + 2} \right) = 72 \\
\]
Now taking LCM on the LHS of the above equation. We get,
\[r\left( {\dfrac{{22 + 14}}{7}} \right) = \dfrac{{36r}}{7} = 72\]
Now multiplying both sides of the above equation by \[\dfrac{7}{{36}}\]. We get,
\[r = 72 \times \dfrac{7}{{36}} = 14\]metres.
Now as we can see from the above figure that the radius of outer semicircle (plot included with path) is the sum of radius of inner semicircle and width of the path.
So, let the radius of outer semicircle be R metres.
So, R = r + width of the plot = 14 m + 3.5 m = 17.5 metres
Now we are asked to find the area of the path.
And as we can see from the above figure that the area of the path is the area of the inner semicircle (glassy plot) subtracted from the area of the outer semicircle (glassy plot with path included).
As we know that the area of the semicircle with radius r is \[\dfrac{{\pi {r^2}}}{2}\].
So, the area of the outer semicircle (glassy plot with path included) will be equal to \[\dfrac{{\pi {R^2}}}{2} = \dfrac{{\pi {{\left( {17.5} \right)}^2}}}{2} = 153.125\pi {\text{ }}{m^2}\]
And the area of the inner semicircle (glassy plot) will be equal to \[\dfrac{{\pi {r^2}}}{2} = \dfrac{{\pi {{\left( {14} \right)}^2}}}{2} = 98\pi {\text{ }}{m^2}\]
So, the area of the path will be = area of outer semicircle – area of the inner semicircle = \[153.125\pi - 98\pi = 55.125\pi = 55.125 \times \dfrac{{22}}{7} = 173.25{\text{ }}{m^2}\]
Hence, the area of the path will be \[173.25{\text{ }}{m^2}\].
Note:- Whenever we come up with this type of problem then first, we have to draw the figure. And then we had to calculate the radius of the inner semicircle by comparing the given perimeter with \[\pi r + 2r\] and after that we will find the radius of outer semicircle by adding the width of the road to the radius of inner semicircle. And at last to calculate the area of the path we should first find the area of inner and outer semicircle using the formula of the area of the semicircle i.e. \[\dfrac{{\pi {r^2}}}{2}\]. And then subtract the area of inner semicircle from the area of outer semicircle to get the required area of the path.
Complete step-by-step answer:
As we know that the perimeter of the semicircle is calculated as \[\pi r\] + diameter = \[\pi r + 2r\]. Where r is the radius of semicircle.
So, let the radius of the grassy plot be r metres.
And it is given that the perimeter of the grassy plot is 72m.
\[
\pi r + 2r = 72 \\
r\left( {\pi + 2} \right) = 72 \\
r\left( {\dfrac{{22}}{7} + 2} \right) = 72 \\
\]
Now taking LCM on the LHS of the above equation. We get,
\[r\left( {\dfrac{{22 + 14}}{7}} \right) = \dfrac{{36r}}{7} = 72\]
Now multiplying both sides of the above equation by \[\dfrac{7}{{36}}\]. We get,
\[r = 72 \times \dfrac{7}{{36}} = 14\]metres.
Now as we can see from the above figure that the radius of outer semicircle (plot included with path) is the sum of radius of inner semicircle and width of the path.
So, let the radius of outer semicircle be R metres.
So, R = r + width of the plot = 14 m + 3.5 m = 17.5 metres
Now we are asked to find the area of the path.
And as we can see from the above figure that the area of the path is the area of the inner semicircle (glassy plot) subtracted from the area of the outer semicircle (glassy plot with path included).
As we know that the area of the semicircle with radius r is \[\dfrac{{\pi {r^2}}}{2}\].
So, the area of the outer semicircle (glassy plot with path included) will be equal to \[\dfrac{{\pi {R^2}}}{2} = \dfrac{{\pi {{\left( {17.5} \right)}^2}}}{2} = 153.125\pi {\text{ }}{m^2}\]
And the area of the inner semicircle (glassy plot) will be equal to \[\dfrac{{\pi {r^2}}}{2} = \dfrac{{\pi {{\left( {14} \right)}^2}}}{2} = 98\pi {\text{ }}{m^2}\]
So, the area of the path will be = area of outer semicircle – area of the inner semicircle = \[153.125\pi - 98\pi = 55.125\pi = 55.125 \times \dfrac{{22}}{7} = 173.25{\text{ }}{m^2}\]
Hence, the area of the path will be \[173.25{\text{ }}{m^2}\].
Note:- Whenever we come up with this type of problem then first, we have to draw the figure. And then we had to calculate the radius of the inner semicircle by comparing the given perimeter with \[\pi r + 2r\] and after that we will find the radius of outer semicircle by adding the width of the road to the radius of inner semicircle. And at last to calculate the area of the path we should first find the area of inner and outer semicircle using the formula of the area of the semicircle i.e. \[\dfrac{{\pi {r^2}}}{2}\]. And then subtract the area of inner semicircle from the area of outer semicircle to get the required area of the path.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE