
A person listening to a tone of $500{\text{ Hz}}$ sitting at a distance $450{\text{ m}}$ from the source of the sound. What is the time interval between the successive compressions from the source?
$\left( a \right){\text{ 5 ms}}$
$\left( b \right){\text{ 1 ms}}$
$\left( c \right){\text{ 2 ms}}$
$\left( d \right){\text{ 2 s}}$
Answer
233.1k+ views
Hint Frequency is the number of cycles per second meant as Hertz. The period is seconds per cycle. Converse since, supposing that the frequency is high, at that point the period is low. So by using the above statement we will be able to find it.
Formula used:
Time period,
$T = \dfrac{1}{f}$
Here,
$T$, will be the time period
$f$, will be the frequency.
Complete Step By Step Solution Frequency and period are contrary related amounts. So, the time span between progressive compressions is equivalent to the time-frame of the wave. Furthermore, this time span is proportional to the recurrence of the wave.
Therefore, by using the formula for the time period
We get
$T = \dfrac{1}{f}$
Now substitute the values, we get
$ \Rightarrow T = \dfrac{1}{{500}}s$
Now on solving the above equation, we get
$ \Rightarrow T = 0.002{\text{ s}}$
Therefore, in milliseconds it will be
$ \Rightarrow T = 2{\text{ ms}}$
The above time period will be required for the source having successive compression.
Hence the option $\left( c \right)$ will be correct.
Additional information At the point when a function happens consistently, at that point, we state that the function is occasional and allude to the ideal opportunity for the function to rehash itself as the period. Period - as expected - is estimated in a flash, hours, days, or years. For example, the time of the pivot of Earth on its hub is twenty-four hours.
Note There is the relationship that the time period is the average distance between bodies or particles or photons divided by their average velocity. The frequency is the reciprocal of the period. The average is measured over some time if it varies, or it is necessary to do so to measure a minimum quantity.
Formula used:
Time period,
$T = \dfrac{1}{f}$
Here,
$T$, will be the time period
$f$, will be the frequency.
Complete Step By Step Solution Frequency and period are contrary related amounts. So, the time span between progressive compressions is equivalent to the time-frame of the wave. Furthermore, this time span is proportional to the recurrence of the wave.
Therefore, by using the formula for the time period
We get
$T = \dfrac{1}{f}$
Now substitute the values, we get
$ \Rightarrow T = \dfrac{1}{{500}}s$
Now on solving the above equation, we get
$ \Rightarrow T = 0.002{\text{ s}}$
Therefore, in milliseconds it will be
$ \Rightarrow T = 2{\text{ ms}}$
The above time period will be required for the source having successive compression.
Hence the option $\left( c \right)$ will be correct.
Additional information At the point when a function happens consistently, at that point, we state that the function is occasional and allude to the ideal opportunity for the function to rehash itself as the period. Period - as expected - is estimated in a flash, hours, days, or years. For example, the time of the pivot of Earth on its hub is twenty-four hours.
Note There is the relationship that the time period is the average distance between bodies or particles or photons divided by their average velocity. The frequency is the reciprocal of the period. The average is measured over some time if it varies, or it is necessary to do so to measure a minimum quantity.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

Class 11 JEE Main Physics Mock Test 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

