Answer
Verified
451.5k+ views
Hint: Compton Effect is the increase in wavelength of X-rays and other energetic electromagnetic radiations that have been elastically scattered by electrons; it is a principal way in which radiant energy is absorbed in matter. Using this, find the wavelength of the scattered photon and then its energy.
Complete step by step answer:
We are given that a photon of energy 1.02MeV undergoes Compton scattering from a block through ${180^ \circ }$
We have to find the energy of the scattered photon.
By Compton Effect, the wavelength shift experienced by the photon is
${\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right)$, where h is the Planck constant, $\lambda ,{\lambda ^1}$ are the wavelengths of incident and scattered rays, m is the mass of the photon and c is the speed of the photon (light).
$
{\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right) \\
\theta = {180^ \circ } \\
\cos {180^ \circ } = - 1 \\
$
$
\Rightarrow {\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 + 1} \right) \\
\dfrac{h}{{{m_o}c}} = 0.0243A \\
\Rightarrow {\lambda ^1} - \lambda = 2 \times 0.0243 \times {10^{ - 10}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86 \times {10^{ - 12}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86pm \to eq(1) \\
$
Wavelength of the incident ray is
$
E = hf \\
f = \dfrac{c}{\lambda } \\
\Rightarrow E = \dfrac{{hc}}{\lambda } \\
E = 1.02MeV \\
\Rightarrow 1.02MeV = \dfrac{{hc}}{\lambda } \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.02MeV}} \\
hc = 1.24 \\
\Rightarrow \lambda = \dfrac{{1.24}}{{1.02}} \\
\Rightarrow \lambda = 1.21pm \\
$
Substitute the wavelength of incident ray in equation 1 to find the wavelength of the scattered ray.
$
{\lambda ^1} - \lambda = 4.86pm \\
\lambda = 1.21pm \\
\Rightarrow {\lambda ^1} = 4.86 + 1.21 \\
\Rightarrow {\lambda ^1} = 6.07pm \\
$
Energy of the scattered photon will be
$
E = hf = \dfrac{{hc}}{\lambda } \\
\lambda = 6.07pm \\
\Rightarrow E = \dfrac{{1.24}}{{6.07}} \\
\Rightarrow E = 0.2043MeV \\
$
The energy of the scattered photon is 0.2043MeV
The correct option is Option A.
Note:A photon is a tiny particle that comprises waves of electromagnetic radiation. Photons have no charge, no resting mass, and travel at the speed of light. The value of Planck’s constant is $6.626 \times {10^{ - 34}}Js$, the value of velocity of a photon is $3 \times {10^8}m/s$. Among the units commonly used to denote photon energy are the electron volt (eV) and the joules.
Complete step by step answer:
We are given that a photon of energy 1.02MeV undergoes Compton scattering from a block through ${180^ \circ }$
We have to find the energy of the scattered photon.
By Compton Effect, the wavelength shift experienced by the photon is
${\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right)$, where h is the Planck constant, $\lambda ,{\lambda ^1}$ are the wavelengths of incident and scattered rays, m is the mass of the photon and c is the speed of the photon (light).
$
{\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 - \cos \theta } \right) \\
\theta = {180^ \circ } \\
\cos {180^ \circ } = - 1 \\
$
$
\Rightarrow {\lambda ^1} - \lambda = \dfrac{h}{{{m_o}c}}\left( {1 + 1} \right) \\
\dfrac{h}{{{m_o}c}} = 0.0243A \\
\Rightarrow {\lambda ^1} - \lambda = 2 \times 0.0243 \times {10^{ - 10}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86 \times {10^{ - 12}}m \\
\Rightarrow {\lambda ^1} - \lambda = 4.86pm \to eq(1) \\
$
Wavelength of the incident ray is
$
E = hf \\
f = \dfrac{c}{\lambda } \\
\Rightarrow E = \dfrac{{hc}}{\lambda } \\
E = 1.02MeV \\
\Rightarrow 1.02MeV = \dfrac{{hc}}{\lambda } \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.02MeV}} \\
hc = 1.24 \\
\Rightarrow \lambda = \dfrac{{1.24}}{{1.02}} \\
\Rightarrow \lambda = 1.21pm \\
$
Substitute the wavelength of incident ray in equation 1 to find the wavelength of the scattered ray.
$
{\lambda ^1} - \lambda = 4.86pm \\
\lambda = 1.21pm \\
\Rightarrow {\lambda ^1} = 4.86 + 1.21 \\
\Rightarrow {\lambda ^1} = 6.07pm \\
$
Energy of the scattered photon will be
$
E = hf = \dfrac{{hc}}{\lambda } \\
\lambda = 6.07pm \\
\Rightarrow E = \dfrac{{1.24}}{{6.07}} \\
\Rightarrow E = 0.2043MeV \\
$
The energy of the scattered photon is 0.2043MeV
The correct option is Option A.
Note:A photon is a tiny particle that comprises waves of electromagnetic radiation. Photons have no charge, no resting mass, and travel at the speed of light. The value of Planck’s constant is $6.626 \times {10^{ - 34}}Js$, the value of velocity of a photon is $3 \times {10^8}m/s$. Among the units commonly used to denote photon energy are the electron volt (eV) and the joules.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths