Answer
Verified
469.5k+ views
Hint:- We can take variable x and y as the horizontal distance between the aeroplane and Vashi bridge and Warli sea-link. And then we can use trigonometric identity like \[\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}\] to find the value of x and y as the angle of depression is given as \[60^\circ \] and \[30^\circ \].
Complete step-by-step answer:
Let us draw the diagram which will make it easy to solve the problem.
Now as seen from the above diagram Aeroplane is at point A, Vashi bridge is at point B and Warli sea-link is at point C.
So, now we have to find the value of x and y and then the distance between Vashi bridge and Warli sea link will be equal to x + y.
So, now as we know that \[\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}\] .
So, in triangle ABD, \[\tan 60^\circ = \dfrac{{AD}}{{BD}}\]
As we know that \[\tan 60^\circ = \sqrt 3 \]
So, \[\sqrt 3 = \dfrac{{AD}}{{BD}}\]
Now cross multiplying the above equation.
\[BD = \dfrac{{AD}}{{\sqrt 3 }} = \dfrac{{5500\sqrt 3 }}{{\sqrt 3 }} = 5500\]m
So, x = 5500 metres
In triangle ADC, \[\tan 30^\circ = \dfrac{{AD}}{{DC}}\] and \[\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}\]
So, \[\dfrac{1}{{\sqrt 3 }} = \dfrac{{AD}}{{DC}}\]
Now cross multiplying the above equation.
\[DC = AD\sqrt 3 = \left( {5500\sqrt 3 } \right)\sqrt 3 = 5500 \times 3 = 16500\]m
So, y = 16500 metres
Hence, the distance between Vashi bridge and Warli sea-link will be x + y = 5500 + 16500 = 22000 metres.
Note:- Whenever we come up with this type of problem then there is a trick to find the length of any side (here base) of the triangle if the length of any one side (here height) and one angle is given. Like if the height is given and asked the base length (distance between Vashi bridge and Warli sea-link) then we had to use the identity of \[\tan \theta \] or \[\cot \theta \] because these two identities involve base length and height. And if the hypotenuse of the triangle is given or asked then we have to use \[\sin \theta \] or \[\cos \theta \] because these two involve hypotenuses.
Complete step-by-step answer:
Let us draw the diagram which will make it easy to solve the problem.
Now as seen from the above diagram Aeroplane is at point A, Vashi bridge is at point B and Warli sea-link is at point C.
So, now we have to find the value of x and y and then the distance between Vashi bridge and Warli sea link will be equal to x + y.
So, now as we know that \[\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}\] .
So, in triangle ABD, \[\tan 60^\circ = \dfrac{{AD}}{{BD}}\]
As we know that \[\tan 60^\circ = \sqrt 3 \]
So, \[\sqrt 3 = \dfrac{{AD}}{{BD}}\]
Now cross multiplying the above equation.
\[BD = \dfrac{{AD}}{{\sqrt 3 }} = \dfrac{{5500\sqrt 3 }}{{\sqrt 3 }} = 5500\]m
So, x = 5500 metres
In triangle ADC, \[\tan 30^\circ = \dfrac{{AD}}{{DC}}\] and \[\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}\]
So, \[\dfrac{1}{{\sqrt 3 }} = \dfrac{{AD}}{{DC}}\]
Now cross multiplying the above equation.
\[DC = AD\sqrt 3 = \left( {5500\sqrt 3 } \right)\sqrt 3 = 5500 \times 3 = 16500\]m
So, y = 16500 metres
Hence, the distance between Vashi bridge and Warli sea-link will be x + y = 5500 + 16500 = 22000 metres.
Note:- Whenever we come up with this type of problem then there is a trick to find the length of any side (here base) of the triangle if the length of any one side (here height) and one angle is given. Like if the height is given and asked the base length (distance between Vashi bridge and Warli sea-link) then we had to use the identity of \[\tan \theta \] or \[\cot \theta \] because these two identities involve base length and height. And if the hypotenuse of the triangle is given or asked then we have to use \[\sin \theta \] or \[\cos \theta \] because these two involve hypotenuses.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE