Answer
Verified
460.2k+ views
Hint:Here we want to find the weight of the ice-berg. For this assume that the upward force and downward forces are equal here. For this first calculate the upward force and then calculate the downward force. On equating the both equations and solving them, we will get the weight of the ice- berg.
Complete answer:
Let the weight of iceberg be $M$ and weight of iceberg is 200kgwt.
We know that,
Density, $\rho =\dfrac{M}{V}$
Then its volume is,
$V=\dfrac{M}{\rho }$
Here Density, $\rho =$ Specific gravity$\times {{10}^{3}}kg/{{m}^{3}}$
Thus by substituting the value of $\rho $ we get,
$\Rightarrow V=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)$
Hence the weight of displaced water$=(V\times 1.02\times {{10}^{3}})$$N$
Net upward force, ${{F}_{upward}}=Mg+200g$
Net downward force, ${{F}_{downward}}=V\rho g=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)\times \left( 1.02\times {{10}^{3}} \right)\times g$
Here, the net upward force and downward forces are equal.
Hence by equating them we get,
$Mg+200g=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)\times \left( 1.02\times {{10}^{3}} \right)\times g$
$\Rightarrow (M+200)\times g=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)\times (1.02\times {{10}^{3}})\times g$
Here both left hand side and right hand side contain $g$ .
Hence cancelling them equation becomes,
$\Rightarrow (M+200)=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)\times (1.02\times {{10}^{3}})$
$\Rightarrow \left( M+200 \right)=\left( 1.133M \right)$
Taking the terms that containing $M$ in right hand side and other terms in left hand side we get,
$\Rightarrow 200=1.133M-M$
Thus equation becomes,
$\Rightarrow 200=0.133M$
Therefore,
$\Rightarrow M=1500kgwt$
The weight of the iceberg is 1500kgwt.
So, the correct answer is “Option A”.
Additional Information:
Buoyant force is an example of upward force. The material which has less density always flows on water. At that time buoyancy force will be equal to force of gravity.
Note:
The force that exerts on the surface of the object is called the normal force. For an object at rest, the net force on that object will be equal to zero. In that case the upward force and the downward force will be equal. Here, the downward force is the weight exerted by the object and upward force is the normal force.
Complete answer:
Let the weight of iceberg be $M$ and weight of iceberg is 200kgwt.
We know that,
Density, $\rho =\dfrac{M}{V}$
Then its volume is,
$V=\dfrac{M}{\rho }$
Here Density, $\rho =$ Specific gravity$\times {{10}^{3}}kg/{{m}^{3}}$
Thus by substituting the value of $\rho $ we get,
$\Rightarrow V=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)$
Hence the weight of displaced water$=(V\times 1.02\times {{10}^{3}})$$N$
Net upward force, ${{F}_{upward}}=Mg+200g$
Net downward force, ${{F}_{downward}}=V\rho g=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)\times \left( 1.02\times {{10}^{3}} \right)\times g$
Here, the net upward force and downward forces are equal.
Hence by equating them we get,
$Mg+200g=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)\times \left( 1.02\times {{10}^{3}} \right)\times g$
$\Rightarrow (M+200)\times g=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)\times (1.02\times {{10}^{3}})\times g$
Here both left hand side and right hand side contain $g$ .
Hence cancelling them equation becomes,
$\Rightarrow (M+200)=\left( \dfrac{M}{0.9\times {{10}^{3}}} \right)\times (1.02\times {{10}^{3}})$
$\Rightarrow \left( M+200 \right)=\left( 1.133M \right)$
Taking the terms that containing $M$ in right hand side and other terms in left hand side we get,
$\Rightarrow 200=1.133M-M$
Thus equation becomes,
$\Rightarrow 200=0.133M$
Therefore,
$\Rightarrow M=1500kgwt$
The weight of the iceberg is 1500kgwt.
So, the correct answer is “Option A”.
Additional Information:
Buoyant force is an example of upward force. The material which has less density always flows on water. At that time buoyancy force will be equal to force of gravity.
Note:
The force that exerts on the surface of the object is called the normal force. For an object at rest, the net force on that object will be equal to zero. In that case the upward force and the downward force will be equal. Here, the downward force is the weight exerted by the object and upward force is the normal force.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE