A pole is standing erect on the ground which is horizontal. The tip of the pole is tied right with a rope of $\sqrt {12} m$ to a point on the ground. if the rope is making 30° angle with the horizontal, then the height of the pole is
A. 2$\sqrt 3 $m
B. 3$\sqrt 2 $ m
C. 3m
D. $\sqrt 3 $m
Answer
Verified
488.1k+ views
Hint: In this question first of all make a diagram to get a visual picture of the problem, then assume the height to be H. Now use properties of the trigonometric ratios i.e. in this case Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$. This will help you to find the height (perpendicular).
Complete step-by-step answer:
Let the height of the pole be H metres
According to the question AC=$\sqrt {12} m$
We know by basic properties of trigonometric ratios that Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$
In triangle ABC,
Sin 30\[^0\]=$\dfrac{H}{{AC}}$
Sin 30\[^0\] = $\dfrac{H}{{\sqrt {12} }}$
We know that Sin 30\[^0\] = $\dfrac{1}{2}$
$\dfrac{1}{2}$=$\dfrac{H}{{\sqrt {12} }}$
H= $\dfrac{{\sqrt {12} }}{2}$
H=$\dfrac{{\sqrt {4 \times 3} }}{2}$
H=$\dfrac{{2\sqrt 3 }}{2}$
H=$\sqrt 3 $
So, the height of the triangle is $\sqrt 3 $m.
Note: The ratios of the sides of a right triangle are called trigonometric ratios. There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent. These six trigonometric ratios are abbreviated as sin, cos, tan, csc, sec, cot.
Complete step-by-step answer:
Let the height of the pole be H metres
According to the question AC=$\sqrt {12} m$
We know by basic properties of trigonometric ratios that Sin$\theta $=$\dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}}$
In triangle ABC,
Sin 30\[^0\]=$\dfrac{H}{{AC}}$
Sin 30\[^0\] = $\dfrac{H}{{\sqrt {12} }}$
We know that Sin 30\[^0\] = $\dfrac{1}{2}$
$\dfrac{1}{2}$=$\dfrac{H}{{\sqrt {12} }}$
H= $\dfrac{{\sqrt {12} }}{2}$
H=$\dfrac{{\sqrt {4 \times 3} }}{2}$
H=$\dfrac{{2\sqrt 3 }}{2}$
H=$\sqrt 3 $
So, the height of the triangle is $\sqrt 3 $m.
Note: The ratios of the sides of a right triangle are called trigonometric ratios. There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent. These six trigonometric ratios are abbreviated as sin, cos, tan, csc, sec, cot.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE