Answer
Verified
502.2k+ views
Hint: - This question may be interpreted in two ways, which we shall discuss separately.
I) If we consider that all numbers of shillings are equally likely, we shall have three hypothesis:
i. All the coins may be shillings
ii. Three of them may be shillings
iii. Only two of them may be shillings
Here${P_1} = {P_2} = {P_3}$
Also${p_1} = 1,{p_2} = \dfrac{1}{2},{p_3} = \dfrac{1}{6}$
Hence probability of first hypothesis is${Q_1}$
$ = 1 \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{6}{{10}}$
Probability of second hypothesis is${Q_2}$
$ = \dfrac{1}{2} \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{3}{{10}}$
Probability of third hypothesis is${Q_3}$
$ = \dfrac{1}{6} \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{1}{{10}}$
Therefore the probability that another drawing will give a sovereign is
$
= \left( {{Q_1} \times 0} \right) + \left( {{Q_2} \times \dfrac{1}{4}} \right) + \left( {{Q_3} \times \dfrac{2}{4}} \right) \\
= \left( {\dfrac{6}{{10}} \times 0} \right) + \left( {\dfrac{3}{{10}} \times \dfrac{1}{4}} \right) + \left( {\dfrac{1}{{10}} \times \dfrac{2}{4}} \right) \\
= \dfrac{3}{{40}} + \dfrac{2}{{40}} \\
= \dfrac{5}{{40}} = \dfrac{1}{8} \\
$
II) If each coin is equally likely to be a shilling or sovereign, by taking the terms in the expansion of
${\left( {\dfrac{1}{2} + \dfrac{1}{2}} \right)^4}$, we see that the chance of four shillings is$\dfrac{1}{{16}}$, of three shillings is$\dfrac{4}{{16}}$, of two shillings is$\dfrac{6}{{16}}$; thus
${P_1} = \dfrac{1}{{16}},{P_2} = \dfrac{4}{{16}},{P_3} = \dfrac{6}{{16}}$
Also, as before ${p_1} = 1,{p_2} = \dfrac{1}{2},{p_3} = \dfrac{1}{6}$.
Hence$\dfrac{{{Q_1}}}{6} = \dfrac{{{Q_2}}}{{12}} = \dfrac{{{Q_3}}}{6} = \dfrac{{{Q_1} + {Q_2} + {Q_3}}}{6} = \dfrac{1}{{24}}$
Therefore the probability that another drawing will give a sovereign
$
= \left( {{Q_1} \times 0} \right) + \left( {{Q_2} \times \dfrac{1}{4}} \right) + \left( {{Q_3} \times \dfrac{2}{4}} \right) \\
= \left( {\dfrac{1}{4} \times 0} \right) + \left( {\dfrac{1}{2} \times \dfrac{1}{4}} \right) + \left( {\dfrac{1}{4} \times \dfrac{2}{4}} \right) \\
= 0 + \dfrac{1}{8} + \dfrac{2}{{16}} \\
= \dfrac{1}{4} \\
$
Note: - Both the methods used above are equally correct till the direction is not mentioned in the question. In case of mutually exclusive events, such as in the above probability of different events are found out separately and then added to find the final probability.
I) If we consider that all numbers of shillings are equally likely, we shall have three hypothesis:
i. All the coins may be shillings
ii. Three of them may be shillings
iii. Only two of them may be shillings
Here${P_1} = {P_2} = {P_3}$
Also${p_1} = 1,{p_2} = \dfrac{1}{2},{p_3} = \dfrac{1}{6}$
Hence probability of first hypothesis is${Q_1}$
$ = 1 \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{6}{{10}}$
Probability of second hypothesis is${Q_2}$
$ = \dfrac{1}{2} \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{3}{{10}}$
Probability of third hypothesis is${Q_3}$
$ = \dfrac{1}{6} \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{1}{{10}}$
Therefore the probability that another drawing will give a sovereign is
$
= \left( {{Q_1} \times 0} \right) + \left( {{Q_2} \times \dfrac{1}{4}} \right) + \left( {{Q_3} \times \dfrac{2}{4}} \right) \\
= \left( {\dfrac{6}{{10}} \times 0} \right) + \left( {\dfrac{3}{{10}} \times \dfrac{1}{4}} \right) + \left( {\dfrac{1}{{10}} \times \dfrac{2}{4}} \right) \\
= \dfrac{3}{{40}} + \dfrac{2}{{40}} \\
= \dfrac{5}{{40}} = \dfrac{1}{8} \\
$
II) If each coin is equally likely to be a shilling or sovereign, by taking the terms in the expansion of
${\left( {\dfrac{1}{2} + \dfrac{1}{2}} \right)^4}$, we see that the chance of four shillings is$\dfrac{1}{{16}}$, of three shillings is$\dfrac{4}{{16}}$, of two shillings is$\dfrac{6}{{16}}$; thus
${P_1} = \dfrac{1}{{16}},{P_2} = \dfrac{4}{{16}},{P_3} = \dfrac{6}{{16}}$
Also, as before ${p_1} = 1,{p_2} = \dfrac{1}{2},{p_3} = \dfrac{1}{6}$.
Hence$\dfrac{{{Q_1}}}{6} = \dfrac{{{Q_2}}}{{12}} = \dfrac{{{Q_3}}}{6} = \dfrac{{{Q_1} + {Q_2} + {Q_3}}}{6} = \dfrac{1}{{24}}$
Therefore the probability that another drawing will give a sovereign
$
= \left( {{Q_1} \times 0} \right) + \left( {{Q_2} \times \dfrac{1}{4}} \right) + \left( {{Q_3} \times \dfrac{2}{4}} \right) \\
= \left( {\dfrac{1}{4} \times 0} \right) + \left( {\dfrac{1}{2} \times \dfrac{1}{4}} \right) + \left( {\dfrac{1}{4} \times \dfrac{2}{4}} \right) \\
= 0 + \dfrac{1}{8} + \dfrac{2}{{16}} \\
= \dfrac{1}{4} \\
$
Note: - Both the methods used above are equally correct till the direction is not mentioned in the question. In case of mutually exclusive events, such as in the above probability of different events are found out separately and then added to find the final probability.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE