: A quadratic polynomial, the sum of whose zeros is 0 and one zero is 3, is
A.${{x}^{2}}-9$
B.${{x}^{2}}+9$
C.${{x}^{2}}+3$
D.${{x}^{2}}-3$
Answer
Verified
498k+ views
Hint: For solving this problem, first express the general quadratic equation in terms of sum of zeroes and product of zeros. Let the other zero be k. Now the product of zeros can be obtained by using the sum of zeros condition. Putting both the values in the general form will give us the desired result.
Complete step-by-step answer:
In algebra, a quadratic function is a polynomial function with one or more variables in which the highest-degree term is of the second degree. A single-variable quadratic function can be stated as:
$f(x)=a{{x}^{2}}+bx+c,\quad a\ne 0$
If we have two zeros of a quadratic equation then the polynomial could be formed by using the simplified result which could be stated as:
${{x}^{2}}-(a+b)x+ab$, where a and b are two zeroes of the equation.
According to the problem statement, we are given that the sum of zeros of a quadratic polynomial is 0. Putting it in the general form, we get
$\begin{align}
& a+b=0 \\
& \therefore {{x}^{2}}-0x+ab=0 \\
& {{x}^{2}}+ab=0 \\
\end{align}$
Let the other zero be k. Since the sum of zeros is 0, therefore k + 3 = 0. So, the other zero is -3
The product of zeros can be expressed as: $3\times -3=-9$
Putting the obtained value in the general form, we get
$\begin{align}
& ab=-9 \\
& {{x}^{2}}+ab={{x}^{2}}-9 \\
\end{align}$
Hence, the required quadratic polynomial is ${{x}^{2}}-9$.
Therefore option (a) is correct.
Note: After obtaining the second root of the equation, we can directly evaluate the quadratic equation as $(x-3)(x+3)={{x}^{2}}-9$, without using the general form. Since, it is mentioned that the polynomial is a quadratic polynomial, so we can proceed in this manner also to save time.
Complete step-by-step answer:
In algebra, a quadratic function is a polynomial function with one or more variables in which the highest-degree term is of the second degree. A single-variable quadratic function can be stated as:
$f(x)=a{{x}^{2}}+bx+c,\quad a\ne 0$
If we have two zeros of a quadratic equation then the polynomial could be formed by using the simplified result which could be stated as:
${{x}^{2}}-(a+b)x+ab$, where a and b are two zeroes of the equation.
According to the problem statement, we are given that the sum of zeros of a quadratic polynomial is 0. Putting it in the general form, we get
$\begin{align}
& a+b=0 \\
& \therefore {{x}^{2}}-0x+ab=0 \\
& {{x}^{2}}+ab=0 \\
\end{align}$
Let the other zero be k. Since the sum of zeros is 0, therefore k + 3 = 0. So, the other zero is -3
The product of zeros can be expressed as: $3\times -3=-9$
Putting the obtained value in the general form, we get
$\begin{align}
& ab=-9 \\
& {{x}^{2}}+ab={{x}^{2}}-9 \\
\end{align}$
Hence, the required quadratic polynomial is ${{x}^{2}}-9$.
Therefore option (a) is correct.
Note: After obtaining the second root of the equation, we can directly evaluate the quadratic equation as $(x-3)(x+3)={{x}^{2}}-9$, without using the general form. Since, it is mentioned that the polynomial is a quadratic polynomial, so we can proceed in this manner also to save time.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE