Answer
Verified
479.1k+ views
Hint: For solving this problem, first express the general quadratic equation in terms of sum of zeroes and product of zeros. Let the other zero be k. Now the product of zeros can be obtained by using the sum of zeros condition. Putting both the values in the general form will give us the desired result.
Complete step-by-step answer:
In algebra, a quadratic function is a polynomial function with one or more variables in which the highest-degree term is of the second degree. A single-variable quadratic function can be stated as:
$f(x)=a{{x}^{2}}+bx+c,\quad a\ne 0$
If we have two zeros of a quadratic equation then the polynomial could be formed by using the simplified result which could be stated as:
${{x}^{2}}-(a+b)x+ab$, where a and b are two zeroes of the equation.
According to the problem statement, we are given that the sum of zeros of a quadratic polynomial is 0. Putting it in the general form, we get
$\begin{align}
& a+b=0 \\
& \therefore {{x}^{2}}-0x+ab=0 \\
& {{x}^{2}}+ab=0 \\
\end{align}$
Let the other zero be k. Since the sum of zeros is 0, therefore k + 3 = 0. So, the other zero is -3
The product of zeros can be expressed as: $3\times -3=-9$
Putting the obtained value in the general form, we get
$\begin{align}
& ab=-9 \\
& {{x}^{2}}+ab={{x}^{2}}-9 \\
\end{align}$
Hence, the required quadratic polynomial is ${{x}^{2}}-9$.
Therefore option (a) is correct.
Note: After obtaining the second root of the equation, we can directly evaluate the quadratic equation as $(x-3)(x+3)={{x}^{2}}-9$, without using the general form. Since, it is mentioned that the polynomial is a quadratic polynomial, so we can proceed in this manner also to save time.
Complete step-by-step answer:
In algebra, a quadratic function is a polynomial function with one or more variables in which the highest-degree term is of the second degree. A single-variable quadratic function can be stated as:
$f(x)=a{{x}^{2}}+bx+c,\quad a\ne 0$
If we have two zeros of a quadratic equation then the polynomial could be formed by using the simplified result which could be stated as:
${{x}^{2}}-(a+b)x+ab$, where a and b are two zeroes of the equation.
According to the problem statement, we are given that the sum of zeros of a quadratic polynomial is 0. Putting it in the general form, we get
$\begin{align}
& a+b=0 \\
& \therefore {{x}^{2}}-0x+ab=0 \\
& {{x}^{2}}+ab=0 \\
\end{align}$
Let the other zero be k. Since the sum of zeros is 0, therefore k + 3 = 0. So, the other zero is -3
The product of zeros can be expressed as: $3\times -3=-9$
Putting the obtained value in the general form, we get
$\begin{align}
& ab=-9 \\
& {{x}^{2}}+ab={{x}^{2}}-9 \\
\end{align}$
Hence, the required quadratic polynomial is ${{x}^{2}}-9$.
Therefore option (a) is correct.
Note: After obtaining the second root of the equation, we can directly evaluate the quadratic equation as $(x-3)(x+3)={{x}^{2}}-9$, without using the general form. Since, it is mentioned that the polynomial is a quadratic polynomial, so we can proceed in this manner also to save time.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE