A quadrilateral is a parallelogram if a pair of opposite sides are equal and parallel.
Answer
Verified
418.7k+ views
Hint: Here we are given a parallelogram where the opposite sides of it are equal and parallel. Our target is to prove that the other opposite is also equal. We use the conditions of congruence after drawing a diagonal and dividing the parallelogram into two triangles.
Complete step by step solution:
Given: ABCD is quadrilateral and.
To prove: ABCD is a parallelogram.
Proof:
As, AC is a transversal and also, therefore
\[\angle BAC = \angle DCA\] (As they are Alternate angles)
In \[\Delta ADC\] and ΔCBA, we have
\[AB = CD\] (Given)
\[\angle BAC = \angle DCA\] (Alternate angles)
\[AC = CA\] ( as, it is Common side)
Hence, by SAS rule, we get \[\Delta ADC \cong \Delta CBA\]
Hence, by corresponding parts of congruent triangles we get,\[DA = BC\]
Thus, Both the pair of opposite sides are equal in the quadrilateral ABCD, therefore ABCD is a parallelogram.
Hence we proved that a quadrilateral is a parallelogram if a pair of opposite sides are equal and parallel.
Note: There are six important properties of parallelograms to know:
1) Opposite sides are congruent (AB = DC).
2) Opposite angels are congruent (D = B).
3) Consecutive angles are supplementary \[\left( {A{\text{ }} + {\text{ }}D{\text{ }} = {\text{ }}180^\circ } \right).\]
4) If one angle is right, then all angles are right.
5) The diagonals of a parallelogram bisect each other.
6) Each diagonal of a parallelogram separates it into two congruent triangles.
Complete step by step solution:
Given: ABCD is quadrilateral and.
To prove: ABCD is a parallelogram.
Proof:
As, AC is a transversal and also, therefore
\[\angle BAC = \angle DCA\] (As they are Alternate angles)
In \[\Delta ADC\] and ΔCBA, we have
\[AB = CD\] (Given)
\[\angle BAC = \angle DCA\] (Alternate angles)
\[AC = CA\] ( as, it is Common side)
Hence, by SAS rule, we get \[\Delta ADC \cong \Delta CBA\]
Hence, by corresponding parts of congruent triangles we get,\[DA = BC\]
Thus, Both the pair of opposite sides are equal in the quadrilateral ABCD, therefore ABCD is a parallelogram.
Hence we proved that a quadrilateral is a parallelogram if a pair of opposite sides are equal and parallel.
Note: There are six important properties of parallelograms to know:
1) Opposite sides are congruent (AB = DC).
2) Opposite angels are congruent (D = B).
3) Consecutive angles are supplementary \[\left( {A{\text{ }} + {\text{ }}D{\text{ }} = {\text{ }}180^\circ } \right).\]
4) If one angle is right, then all angles are right.
5) The diagonals of a parallelogram bisect each other.
6) Each diagonal of a parallelogram separates it into two congruent triangles.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE