Answer
Verified
441.3k+ views
Hint: Due to free fall, acceleration acting on the body $ a $ is acceleration due to gravity $ g $ . Initial velocity is zero, since the object falls from rest. Half-life is the time required for a quantity to reduce to half of its initial value.
Formula Used: The formulae used in the solution are given here.
$ S = ut + \dfrac{1}{2}a{t^2} $ where $ S $ is the distance, $ u $ is the initial velocity, $ a $ is the acceleration and $ t $ is the time taken.
$ N\left( t \right) = {N_0}{e^{ - \lambda t}} $ where $ {N_0} $ is the initial quantity, $ N\left( t \right) $ is the quantity after time $ t $ , and $ \lambda $ is the decay constant.
Complete Step by Step Solution
It has been given that a radioisotope X has a half-life of $ 10s $ . Find the number of nuclei in the sample (if initially there are 1000 isotopes which are following from rest from a height of 3000m) when it is at a height of 1000m from the reference plane.
By Newton’s law of motion, we already know that, $ S = ut + \dfrac{1}{2}a{t^2} $ .
The distance covered is equal to the height. Thus, height $ = S = 2000m. $
Due to free fall, acceleration acting on the body $ a $ is acceleration due to gravity $ g $ .
Thus, $ a = g. $
Initial velocity is zero, since the object falls from rest.
Thus, $ S = \dfrac{1}{2}a{t^2} $ .
Now, $ a = g $ ,
$ 2000 = \dfrac{1}{2} \times 10 \times {t^2} $
$ \Rightarrow t = \sqrt {\dfrac{{2000}}{5}} = 20s $
Thus time taken in falling a height is 20 seconds.
Given that the half-life is 10 seconds. Half-life is the time required for a quantity to reduce to half of its initial value.
$ {t_{1/2}} = 10s $ .
We know that, $ \lambda = \dfrac{{\ln 2}}{{10}} $ .
Again, $ N\left( t \right) = {N_0}{e^{ - \lambda t}} $ where $ {N_0} $ is the initial quantity, $ N\left( t \right) $ is the quantity after time $ t $ , and $ \lambda $ is the decay constant.
At $ t = 20s $ ,
$ N = \dfrac{{{N_0}}}{4} = 250 $ .
Thus, the number of nuclei in the sample is $ 250 $ .
The correct answer is Option B.
Note
It has been given that, height $ {\text{h = 3000 - 1000 = 2000m}} $
Time taken in falling a height is given as $ t = \sqrt {\dfrac{{2h}}{g}} $ .
Assigning the values, $ g = 10m{s^{ - 2}} $ , $ h = 2000m $ ,
$ t = \sqrt {\dfrac{{2 \times 2000}}{{10}}} = 20s. $
Thus, time taken is 20 seconds.
Number of half-life in this time period is $ n = \dfrac{{20}}{{10}} = 2 $ .
So the number of active nuclei= $ {{initial} \mathord{\left/
{\vphantom {{initial} {{2^n} = {{initial} \mathord{\left/
{\vphantom {{initial} {{2^2}}}} \right.
} {{2^2}}}}}} \right.
} {{2^n} = {{initial} \mathord{\left/
{\vphantom {{initial} {{2^2}}}} \right.
} {{2^2}}}}} $
$ = {{initial} \mathord{\left/
{\vphantom {{initial} {4.}}} \right.
} {4.}} $
Initially there are 1000 isotopes. The number of active nuclei are $ {{1000} \mathord{\left/
{\vphantom {{1000} 4}} \right.
} 4} = 250 $ .
Option B is correct.
Formula Used: The formulae used in the solution are given here.
$ S = ut + \dfrac{1}{2}a{t^2} $ where $ S $ is the distance, $ u $ is the initial velocity, $ a $ is the acceleration and $ t $ is the time taken.
$ N\left( t \right) = {N_0}{e^{ - \lambda t}} $ where $ {N_0} $ is the initial quantity, $ N\left( t \right) $ is the quantity after time $ t $ , and $ \lambda $ is the decay constant.
Complete Step by Step Solution
It has been given that a radioisotope X has a half-life of $ 10s $ . Find the number of nuclei in the sample (if initially there are 1000 isotopes which are following from rest from a height of 3000m) when it is at a height of 1000m from the reference plane.
By Newton’s law of motion, we already know that, $ S = ut + \dfrac{1}{2}a{t^2} $ .
The distance covered is equal to the height. Thus, height $ = S = 2000m. $
Due to free fall, acceleration acting on the body $ a $ is acceleration due to gravity $ g $ .
Thus, $ a = g. $
Initial velocity is zero, since the object falls from rest.
Thus, $ S = \dfrac{1}{2}a{t^2} $ .
Now, $ a = g $ ,
$ 2000 = \dfrac{1}{2} \times 10 \times {t^2} $
$ \Rightarrow t = \sqrt {\dfrac{{2000}}{5}} = 20s $
Thus time taken in falling a height is 20 seconds.
Given that the half-life is 10 seconds. Half-life is the time required for a quantity to reduce to half of its initial value.
$ {t_{1/2}} = 10s $ .
We know that, $ \lambda = \dfrac{{\ln 2}}{{10}} $ .
Again, $ N\left( t \right) = {N_0}{e^{ - \lambda t}} $ where $ {N_0} $ is the initial quantity, $ N\left( t \right) $ is the quantity after time $ t $ , and $ \lambda $ is the decay constant.
At $ t = 20s $ ,
$ N = \dfrac{{{N_0}}}{4} = 250 $ .
Thus, the number of nuclei in the sample is $ 250 $ .
The correct answer is Option B.
Note
It has been given that, height $ {\text{h = 3000 - 1000 = 2000m}} $
Time taken in falling a height is given as $ t = \sqrt {\dfrac{{2h}}{g}} $ .
Assigning the values, $ g = 10m{s^{ - 2}} $ , $ h = 2000m $ ,
$ t = \sqrt {\dfrac{{2 \times 2000}}{{10}}} = 20s. $
Thus, time taken is 20 seconds.
Number of half-life in this time period is $ n = \dfrac{{20}}{{10}} = 2 $ .
So the number of active nuclei= $ {{initial} \mathord{\left/
{\vphantom {{initial} {{2^n} = {{initial} \mathord{\left/
{\vphantom {{initial} {{2^2}}}} \right.
} {{2^2}}}}}} \right.
} {{2^n} = {{initial} \mathord{\left/
{\vphantom {{initial} {{2^2}}}} \right.
} {{2^2}}}}} $
$ = {{initial} \mathord{\left/
{\vphantom {{initial} {4.}}} \right.
} {4.}} $
Initially there are 1000 isotopes. The number of active nuclei are $ {{1000} \mathord{\left/
{\vphantom {{1000} 4}} \right.
} 4} = 250 $ .
Option B is correct.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE