Answer
Verified
452.4k+ views
Hint: This problem is related to the motion of the object. Thus, we have to find the Kinetic energy of the planks. So, find the kinetic energy lost due to one plank and then using the kinetic energy obtained find the total energy lost due to N planks. Now, substitute the value of energy lost due to one plank in the expression for total energy lost. Thus, calculate N i.e. total number of planks required to stop the bullet.
Complete answer:
Let the initial speed of the bullet be v
The bullet loses $({{\dfrac {1}{20}}})^{th}$ of its velocity passing through one plank
$\therefore new \quad velocity= v- \dfrac {v}{20}$
As the velocity decreases, energy gets lost.
Therefore, Kinetic energy lost is given by,
$\Delta E= \dfrac {1}{2} m{v}^{2}$
Substituting values in above equation we get,
$\Delta E= \dfrac {1}{2} m{v}^{2} - \dfrac {1}{2}m({ v- \dfrac {v}{20}})^{2}$
$\therefore \Delta E= \dfrac {1}{2} m{v}^{2}(1- ({\dfrac {20-1}{20}})^{2})$
$\therefore \Delta E= \dfrac {1}{2} m{v}^{2}(1- ({\dfrac {19}{20}})^{2})$
Now, let the number of planks after which velocity becomes 0 be N.
The record, total energy lost is given by,
${E}_{T} = N × E$
$\therefore \dfrac {1}{2} m{v}^{2}= N × E$
Substituting value of E in above equation we get,
$ \dfrac {1}{2} m{v}^{2}= N × \dfrac {1}{2} m{v}^{2}(1- ({ \dfrac{19}{20}})^{2})$
Rearranging above equation we get,
$N= (1- ({ \dfrac{19}{20})}^{2})$
$\therefore N= \dfrac {{20}^{2}}{2\times (-1)}$
$\therefore N= 10.26$
Thus, 11 planks are required to stop the bullet.
Hence, the correct answer is option C i.e.11.
Note:
In this problem, as the velocity decreases consequently acceleration decreases too. Thus, we can solve this problem using Kinematics equation as well i.e. third equation of motion i.e. $ { v }_{ f }^{ 2 }={ v }_{ i }^{ 2 }+2as$
Where, ${v}_{i}$ is the initial velocity
${v}_{f}$ is the final velocity
a is the constant acceleration
s is the displacement
As the number of planks increases, velocity of the bullet decreases. Hence, the energy also decreases with increase in the number of planks.
Complete answer:
Let the initial speed of the bullet be v
The bullet loses $({{\dfrac {1}{20}}})^{th}$ of its velocity passing through one plank
$\therefore new \quad velocity= v- \dfrac {v}{20}$
As the velocity decreases, energy gets lost.
Therefore, Kinetic energy lost is given by,
$\Delta E= \dfrac {1}{2} m{v}^{2}$
Substituting values in above equation we get,
$\Delta E= \dfrac {1}{2} m{v}^{2} - \dfrac {1}{2}m({ v- \dfrac {v}{20}})^{2}$
$\therefore \Delta E= \dfrac {1}{2} m{v}^{2}(1- ({\dfrac {20-1}{20}})^{2})$
$\therefore \Delta E= \dfrac {1}{2} m{v}^{2}(1- ({\dfrac {19}{20}})^{2})$
Now, let the number of planks after which velocity becomes 0 be N.
The record, total energy lost is given by,
${E}_{T} = N × E$
$\therefore \dfrac {1}{2} m{v}^{2}= N × E$
Substituting value of E in above equation we get,
$ \dfrac {1}{2} m{v}^{2}= N × \dfrac {1}{2} m{v}^{2}(1- ({ \dfrac{19}{20}})^{2})$
Rearranging above equation we get,
$N= (1- ({ \dfrac{19}{20})}^{2})$
$\therefore N= \dfrac {{20}^{2}}{2\times (-1)}$
$\therefore N= 10.26$
Thus, 11 planks are required to stop the bullet.
Hence, the correct answer is option C i.e.11.
Note:
In this problem, as the velocity decreases consequently acceleration decreases too. Thus, we can solve this problem using Kinematics equation as well i.e. third equation of motion i.e. $ { v }_{ f }^{ 2 }={ v }_{ i }^{ 2 }+2as$
Where, ${v}_{i}$ is the initial velocity
${v}_{f}$ is the final velocity
a is the constant acceleration
s is the displacement
As the number of planks increases, velocity of the bullet decreases. Hence, the energy also decreases with increase in the number of planks.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE