Answer
Verified
362.7k+ views
Hint: This question is related to the topics of work, energy, power and Impulse. Impulse is the integral of a force, F, over the time interval, t, for which it acts. Since force is a vector quantity, impulse is also a vector quantity. Impulse applied to an object produces an equivalent vector change in its linear momentum, also in the resultant direction.
Complete step by step answer:
Here, we are given that a rigid ball of mass m strikes a rigid wall at ${60^ \circ }$ and gets reflected without loss of speed. So, we need to calculate the impulse imparted by the wall on the ball.
Now, we know that impulse can also be defined as the change in momentum.
So, impulse = final momentum – initial momentum
$I = {P_f} - {P_i}$
Initial momentum of the ball perpendicular to the wall,
${P_i} = m( - v\cos {60^ \circ })$
${P_i} = \dfrac{{ - mv}}{2}$
Similarly, Final momentum of the ball perpendicular to the wall,
${P_f} = m(v\cos {60^ \circ })$
${P_f} = \dfrac{{mv}}{2}$
Also, impulse = final momentum – initial momentum
$I = {P_f} - {P_i}$
$I = \dfrac{{mv}}{2} - \left( {\dfrac{{ - mv}}{2}} \right)$
$I = \dfrac{{mv}}{2} + \dfrac{{mv}}{2}$
$I = mv$
$I = mv$
Therefore, The value of impulse imparted by the wall on the ball will be $mV$. So, option (A) is correct.
Note:
The impulse-momentum theorem states that the impulse applied to an object will be equal to the change in its momentum. In this theorem, we see that how a small force applied over a long period of time can be used to produce the small velocity change as a large force applied over a short period of time.
Complete step by step answer:
Here, we are given that a rigid ball of mass m strikes a rigid wall at ${60^ \circ }$ and gets reflected without loss of speed. So, we need to calculate the impulse imparted by the wall on the ball.
Now, we know that impulse can also be defined as the change in momentum.
So, impulse = final momentum – initial momentum
$I = {P_f} - {P_i}$
Initial momentum of the ball perpendicular to the wall,
${P_i} = m( - v\cos {60^ \circ })$
${P_i} = \dfrac{{ - mv}}{2}$
Similarly, Final momentum of the ball perpendicular to the wall,
${P_f} = m(v\cos {60^ \circ })$
${P_f} = \dfrac{{mv}}{2}$
Also, impulse = final momentum – initial momentum
$I = {P_f} - {P_i}$
$I = \dfrac{{mv}}{2} - \left( {\dfrac{{ - mv}}{2}} \right)$
$I = \dfrac{{mv}}{2} + \dfrac{{mv}}{2}$
$I = mv$
$I = mv$
Therefore, The value of impulse imparted by the wall on the ball will be $mV$. So, option (A) is correct.
Note:
The impulse-momentum theorem states that the impulse applied to an object will be equal to the change in its momentum. In this theorem, we see that how a small force applied over a long period of time can be used to produce the small velocity change as a large force applied over a short period of time.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE