Answer
Verified
414.9k+ views
Hint :Here, we have to use the concept of rotational motion. As we have been given the rod of some length and asked to tie its one end to the fixed point and observe the tensions acting at some distances away from pivoted ends. Here, tension is equal to the centrifugal force acting on the end of the body which is rotating.
Complete Step By Step Answer:
We have the rod of length $ L $ and one end is pivoted such that it rotates with uniform angular velocity $ \omega $ in the horizontal plane. As shown in the figure below
Let us first consider the part of length of $ \dfrac{L}{4} $ consider the figure below:
Here, we have resolved all the forces that are responsible for the tension in the rod, also let $ M $ be the mass of rod
Thus, mass per unit length, $ m = \dfrac{M}{L} $
Now tension acting on length $ \dfrac{{3L}}{4} $ by $ \dfrac{L}{4} $ is $ {T_1} $ and it is equivalent to the centrifugal force acting at the end of length $ \dfrac{{3L}}{4} $ .
Therefore,
$ {T_1} $ = the centrifugal force acting on the end of length $ \dfrac{{3L}}{4} $
$ {T_1} = m{\omega ^2}x $
$ x $ is the distance of center of mass
Now, we know that the $ dx $ is the distance for which we have to calculate the centrifugal force,
Such that, $ mdx $ be the mass at $ dx $ varying in the limit between $ x = \dfrac{L}{4} $ to $ x = L $
$ {T_1} = \int\limits_{\dfrac{L}{4}}^L {mdx \times {\omega ^2} \times x} $
$ \Rightarrow {T_1} = m{\omega ^2}\int\limits_{\dfrac{L}{4}}^L {xdx} $
$ \Rightarrow {T_1} = m{\omega ^2}\left[ {\dfrac{{{L^2}}}{2} - \dfrac{{{L^2}}}{{32}}} \right] $ ….. (on putting all the limits)
$ \boxed{ \Rightarrow {T_1} = m{\omega ^2}\dfrac{{15{L^2}}}{{32}}} $
Similarly, for $ {T_2} $
We have to find tension $ {T_2} $ acting by length $ \dfrac{{3L}}{4} $ on length $ \dfrac{L}{4} $ , consider the figure below:
Follow the same procedure with limits $ x = \dfrac{{3L}}{4} $ to $ x = L $
$ {T_2} = m{\omega ^2}x $
$ \Rightarrow {T_2} = \int\limits_{\dfrac{{3L}}{4}}^L {mdx \times {\omega ^2} \times x} $
$ \Rightarrow {T_2} = m{\omega ^2}\left[ {\dfrac{{{L^2}}}{2} - \dfrac{{9{L^2}}}{{32}}} \right] $
$ \boxed{ \Rightarrow {T_2} = m{\omega ^2}\dfrac{{7{L^2}}}{{32}}} $
Thus, from above conclusions we get that the tensions $ {T_1} > {T_2} $
The correct answer is option A.
Note :
In these types of problems it is important to resolve the forces acting on each other partly or wholly because in the question the tension is asked at different lengths. We carried out the expressions by equating the forces and observed the answer and found out the comparison between tensions. This question can also be solved with the help of the concept of MOI of the rod. You can try yourself.
Complete Step By Step Answer:
We have the rod of length $ L $ and one end is pivoted such that it rotates with uniform angular velocity $ \omega $ in the horizontal plane. As shown in the figure below
Let us first consider the part of length of $ \dfrac{L}{4} $ consider the figure below:
Here, we have resolved all the forces that are responsible for the tension in the rod, also let $ M $ be the mass of rod
Thus, mass per unit length, $ m = \dfrac{M}{L} $
Now tension acting on length $ \dfrac{{3L}}{4} $ by $ \dfrac{L}{4} $ is $ {T_1} $ and it is equivalent to the centrifugal force acting at the end of length $ \dfrac{{3L}}{4} $ .
Therefore,
$ {T_1} $ = the centrifugal force acting on the end of length $ \dfrac{{3L}}{4} $
$ {T_1} = m{\omega ^2}x $
$ x $ is the distance of center of mass
Now, we know that the $ dx $ is the distance for which we have to calculate the centrifugal force,
Such that, $ mdx $ be the mass at $ dx $ varying in the limit between $ x = \dfrac{L}{4} $ to $ x = L $
$ {T_1} = \int\limits_{\dfrac{L}{4}}^L {mdx \times {\omega ^2} \times x} $
$ \Rightarrow {T_1} = m{\omega ^2}\int\limits_{\dfrac{L}{4}}^L {xdx} $
$ \Rightarrow {T_1} = m{\omega ^2}\left[ {\dfrac{{{L^2}}}{2} - \dfrac{{{L^2}}}{{32}}} \right] $ ….. (on putting all the limits)
$ \boxed{ \Rightarrow {T_1} = m{\omega ^2}\dfrac{{15{L^2}}}{{32}}} $
Similarly, for $ {T_2} $
We have to find tension $ {T_2} $ acting by length $ \dfrac{{3L}}{4} $ on length $ \dfrac{L}{4} $ , consider the figure below:
Follow the same procedure with limits $ x = \dfrac{{3L}}{4} $ to $ x = L $
$ {T_2} = m{\omega ^2}x $
$ \Rightarrow {T_2} = \int\limits_{\dfrac{{3L}}{4}}^L {mdx \times {\omega ^2} \times x} $
$ \Rightarrow {T_2} = m{\omega ^2}\left[ {\dfrac{{{L^2}}}{2} - \dfrac{{9{L^2}}}{{32}}} \right] $
$ \boxed{ \Rightarrow {T_2} = m{\omega ^2}\dfrac{{7{L^2}}}{{32}}} $
Thus, from above conclusions we get that the tensions $ {T_1} > {T_2} $
The correct answer is option A.
Note :
In these types of problems it is important to resolve the forces acting on each other partly or wholly because in the question the tension is asked at different lengths. We carried out the expressions by equating the forces and observed the answer and found out the comparison between tensions. This question can also be solved with the help of the concept of MOI of the rod. You can try yourself.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
Define cubit handspan armlength and footspan class 11 physics CBSE
Maximum speed of a particle in simple harmonic motion class 11 physics CBSE
Give a brief account on the canal system in sponge class 11 biology CBSE
Assertion Pila has dual mode of respiration Reason class 11 biology CBSE