Answer
Verified
397.8k+ views
Hint: In the question it is given that the rope with mass is moving upwards by action of force. We can analyse that there will be gravitational force or weight will be acting along with given external force. As the rope is moving upwards that force will be greater in action.
We can use formula $ {F_1} = {F_2} + mg + ma$
Complete answer:
In this question we are given with
Mass of the rope is 5 Kg
The force acting in upward direction is 100N
The force in downward direction is 70N
It is known from the law of motion that all the forces must balance each other in order to attain equilibrium.
Using the formula in accordance with the law of motion we get,
$
{F_1} = {F_2} + mg + ma \\
\Rightarrow 100 = 70 + (5 \times 10) + 5 \times a \\
\Rightarrow 30 - 50 = 5 \times a \\
$
From the above equations we will get the solution as
$ a = 4m/{s^2}$
It is in the downward direction
But, we are asked to find the tension at the midpoint.
Let, the mass of the half rope be 2.5 Kg.
Using the laws of motion we have
\[
{F_1} = {F_2} + mg + ma \\
\Rightarrow T = 70 + 2.5g - 2.5 \times 4 \\
\Rightarrow T = 85N \\
\]
So, we get the tension at the midpoint of rope as 85N.
Note: A string or rope is often idealized as a single dimension, having length but being massless with no cross section or also known as zero cross section. If there are no bends in the string, as occur with pulleys. The tension is a constant along the string, equal to the magnitude of the forces applied by the ends of the string.
Every force has an equal and opposite reaction.
We can use formula $ {F_1} = {F_2} + mg + ma$
Complete answer:
In this question we are given with
Mass of the rope is 5 Kg
The force acting in upward direction is 100N
The force in downward direction is 70N
It is known from the law of motion that all the forces must balance each other in order to attain equilibrium.
Using the formula in accordance with the law of motion we get,
$
{F_1} = {F_2} + mg + ma \\
\Rightarrow 100 = 70 + (5 \times 10) + 5 \times a \\
\Rightarrow 30 - 50 = 5 \times a \\
$
From the above equations we will get the solution as
$ a = 4m/{s^2}$
It is in the downward direction
But, we are asked to find the tension at the midpoint.
Let, the mass of the half rope be 2.5 Kg.
Using the laws of motion we have
\[
{F_1} = {F_2} + mg + ma \\
\Rightarrow T = 70 + 2.5g - 2.5 \times 4 \\
\Rightarrow T = 85N \\
\]
So, we get the tension at the midpoint of rope as 85N.
Note: A string or rope is often idealized as a single dimension, having length but being massless with no cross section or also known as zero cross section. If there are no bends in the string, as occur with pulleys. The tension is a constant along the string, equal to the magnitude of the forces applied by the ends of the string.
Every force has an equal and opposite reaction.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE