A sample of ethane gas $\left( {{C}_{2}}{{H}_{6}} \right)$ has the same mass as $1.5\times {{10}^{20}}$ molecules of methane $\left( C{{H}_{4}} \right)$ . How many ethane molecules does the sample of gas contain?
Answer
Verified
457.2k+ views
Hint: Avogadro’s number is the number of molecules present in 1 mole which is equal to $6.023\times {{10}^{23}}$ entities. It is denoted by the symbol ${{N}_{A}}$ . This value is directly used to find the number of atoms in certain different types of molecules which have different representational units.
Complete Solution :
-Everything present in this universe is made up of atoms. The mass of an atom cannot be measured truly due to its very small size. So a relative term is used for it called relative atomic mass. It is based on the mass of 1 carbon-12 atom. It was adopted internationally in 1961 and according to it, relative atomic is given by
\[Relative\text{ }atomic\text{ }mass\text{ }=\text{ }\dfrac{mass\text{ of 1 atom of element}}{\dfrac{1}{12}\text{x mass of 1 C-12 atom}}\]
-Mole is the amount of substance that contains the atoms, molecules or other particles in an entity equal to the atoms present in 12 g of C-12 isotope. It defines the basis of physical chemistry and so its number is called Avogadro's number which is equal to 6.023 x ${{10}^{23}}$ entities. It is denoted by the symbol ${{N}_{A}}$ .
-Some standard terms used in mole concept are
1 gram-atom = 1 mole atom
1 gram-molecule = 1 mole molecule
1 gram-ion = 1 mole ion
-Here we are given that the number of molecules of methane are $1.5\times {{10}^{20}}$. We know that the number of 1 mole of atoms for any substance is equal to avogadro’s number.
It means that for methane, 16 grams of it will have molecules equal to $6.023\times {{10}^{23}}$. So the weight of $1.5\times {{10}^{20}}$ molecules will be given as
$\dfrac{1.5\times {{10}^{20}}\times 16}{{{N}_{A}}}$
-Also we are given that the sample of ethane gas $\left( {{C}_{2}}{{H}_{6}} \right)$ has the same mass as $1.5\times {{10}^{20}}$molecules of methane $\left( C{{H}_{4}} \right)$. Molecular weight of ethane is 30 grams. Mass of 1 molecule of ethane will be equal to $\dfrac{30}{{{N}_{A}}}$ grams. The weight of ethane molecules is equal to those of $1.5\times {{10}^{20}}$ molecules of methane $\left( C{{H}_{4}} \right)$.
-Thus the number of molecules of ethane will be given as
$\dfrac{1.5\times {{10}^{20}}\times 16}{{{N}_{A}}}\times \dfrac{{{N}_{A}}}{30}$
= \[0.8\times {{10}^{20}}\]
Therefore the number of ethane molecules will be \[0.8\times {{10}^{20}}\].
Note: Mole is not only related to mass but also to volume as any matter that has a certain mass will occupy a certain volume. 1 mole is the amount of molecules present in 22.4 litres of a gas calculated at standard temperature and pressure.
Complete Solution :
-Everything present in this universe is made up of atoms. The mass of an atom cannot be measured truly due to its very small size. So a relative term is used for it called relative atomic mass. It is based on the mass of 1 carbon-12 atom. It was adopted internationally in 1961 and according to it, relative atomic is given by
\[Relative\text{ }atomic\text{ }mass\text{ }=\text{ }\dfrac{mass\text{ of 1 atom of element}}{\dfrac{1}{12}\text{x mass of 1 C-12 atom}}\]
-Mole is the amount of substance that contains the atoms, molecules or other particles in an entity equal to the atoms present in 12 g of C-12 isotope. It defines the basis of physical chemistry and so its number is called Avogadro's number which is equal to 6.023 x ${{10}^{23}}$ entities. It is denoted by the symbol ${{N}_{A}}$ .
-Some standard terms used in mole concept are
1 gram-atom = 1 mole atom
1 gram-molecule = 1 mole molecule
1 gram-ion = 1 mole ion
-Here we are given that the number of molecules of methane are $1.5\times {{10}^{20}}$. We know that the number of 1 mole of atoms for any substance is equal to avogadro’s number.
It means that for methane, 16 grams of it will have molecules equal to $6.023\times {{10}^{23}}$. So the weight of $1.5\times {{10}^{20}}$ molecules will be given as
$\dfrac{1.5\times {{10}^{20}}\times 16}{{{N}_{A}}}$
-Also we are given that the sample of ethane gas $\left( {{C}_{2}}{{H}_{6}} \right)$ has the same mass as $1.5\times {{10}^{20}}$molecules of methane $\left( C{{H}_{4}} \right)$. Molecular weight of ethane is 30 grams. Mass of 1 molecule of ethane will be equal to $\dfrac{30}{{{N}_{A}}}$ grams. The weight of ethane molecules is equal to those of $1.5\times {{10}^{20}}$ molecules of methane $\left( C{{H}_{4}} \right)$.
-Thus the number of molecules of ethane will be given as
$\dfrac{1.5\times {{10}^{20}}\times 16}{{{N}_{A}}}\times \dfrac{{{N}_{A}}}{30}$
= \[0.8\times {{10}^{20}}\]
Therefore the number of ethane molecules will be \[0.8\times {{10}^{20}}\].
Note: Mole is not only related to mass but also to volume as any matter that has a certain mass will occupy a certain volume. 1 mole is the amount of molecules present in 22.4 litres of a gas calculated at standard temperature and pressure.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE